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Abstract
1.	 According to the ideal-free distribution (IFD), individuals within a population are 

free to select habitats that maximize their chances of success. Assuming knowl-
edge of habitat quality, the IFD predicts that average fitness will be approximately 
equal among individuals and between habitats, while density varies, implying that 
habitat selection will be density dependent. Populations are often assumed to 
follow an IFD, although this assumption is rarely tested with empirical data, and 
may be incorrect when territoriality indicates habitat selection tactics that deviate 
from the IFD (e.g. ideal-despotic distribution or ideal-preemptive distribution).

2.	 When territoriality influences habitat selection, species' density will not directly 
reflect components of fitness such as reproductive success or survival. In such 
cases, assuming an IFD can lead to false conclusions about habitat quality. We 
tested theoretical models of density-dependent habitat selection on a species 
known to exhibit territorial behaviour in order to determine whether commonly 
applied habitat models are appropriate under these circumstances.

3.	 We combined long-term radiotelemetry and census data from grey wolves Canis 
lupus in the Upper Peninsula of Michigan, USA to relate spatiotemporal variability in 
wolf density to underlying classifications of habitat within a hierarchical state-space 
modelling framework. We then iteratively applied isodar analysis to evaluate which 
distribution of habitat selection best described this recolonizing wolf population.

4.	 The wolf population in our study expanded by >1,000% during our study (~50 
to >600 individuals), and density-dependent habitat selection was most consist-
ent with the ideal-preemptive distribution, as opposed to the ideal-free or ideal- 
despotic alternatives.

5.	 Population density of terrestrial carnivores may not be positively correlated with 
the fitness value of their habitats, and density-dependent habitat selection pat-
terns may help to explain complex predator–prey dynamics and cascading indirect 
effects. Source–sink population dynamics appear likely when species exhibit rapid 
growth and occupy interspersed habitats of contrasting quality. These conditions 
are likely and have implications for large carnivores in many systems, such as areas 
in North America and Europe where large predator species are currently recolo-
nizing their former ranges.
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1  | INTRODUC TION

Understanding the mechanisms underlying habitat selection is 
of fundamental importance to animal ecology because of their 
implications for population dynamics and the conservation of 
species. Habitat selection is expected to be functionally depen-
dent on conspecific density when animals distribute themselves 
in a way that maximizes fitness and minimizes competition for 
resources (McLoughlin, Morris, Fortin, Vander Wal, & Contasti, 
2010; Morris, 1988). Studies of habitat selection often assume 
that animals within a population follow an ideal-free distribution 
(IFD) of space use. According to the IFD, individuals within a pop-
ulation are free to select habitats that maximize their chances 
of success. Assuming ideal knowledge of habitat quality, the IFD 
predicts that average fitness will be approximately equal on aver-
age among individuals, and between habitats, while density var-
ies (density-dependent habitat selection; Fretwell & Lucas, 1969; 
Morris, 1988). Support for the IFD has been indicated in several 
systems (e.g. Haugen et al., 2006; Morris, 2003a; Quaintenne, 
Gils, Bocher, Dekinga, & Piersma, 2011; van Beest, McLoughlin, 
Vander Wal, & Brook, 2014), but deviations from the IFD are also 
common due to cognitive, resource and movement limitations, and 
competitive interactions (reviewed in Street, Erovenko, & Rowell, 
2018). In comparison, less is known about theoretical distributions 
where animals either compete directly for territory (ideal-despotic 
or ideal-dominant distribution [IDD]; Beckman & Berger, 2003; 
Fretwell & Lucas, 1969; Oro, 2008) or preemptively occupy the 
best available habitat sites (ideal-preemptive distribution [IPD; 
Pulliam & Danielson, 1991]). In the latter situation, the relation-
ship between fitness, density and habitat quality becomes more 
complex, such that density no longer reliably predicts differences 
in fitness among habitat classes (Morris, 1994). Direct tests of the 
distributions that best describe territorial species are rare because 
adequate data are uncommon (but see Edwards, Preu, Crealy, & 
Shakeshaft, 2002; Knight, Morris, & Haedrich, 2008), so it is often 
unclear whether empirical evidence supports theoretical expec-
tations (Haché, Villard, & Bayne, 2013; McLoughlin et al., 2006; 
Morris, 2003a, 2003b).

Isodar theory is a framework for testing theoretical habitat 
distributions and can reveal influences of density dependence 
on habitat selection patterns (Morris, 2003a). A habitat isodar is 
generated by separating a population's geographic distribution 
into distinguishable classes (e.g. habitat A vs. habitat B), where 
the population's density can be estimated in each class (Morris, 
1987, 1988, 1994). More specifically, an isodar is constructed by 
repeatedly gathering estimates of density in each class over time 

and plotting paired densities in habitat A versus habitat B. The 
isodar can take a variety of linear or nonlinear shapes, which may 
imply an underlying habitat selection distribution such as IFD, IDD 
or IPD, and can reveal important insights about animal behaviours 
and population dynamics (McLoughlin et al., 2010; Morris, 1994, 
2003a). Under the IFD, if two habitats differ in suitability, then 
fitness declines as a function of density in both habitats but the 
average density in one habitat is consistently higher than the other 
(Figure 1a; Morris, 1988, 1994). According to this model, the infe-
rior habitat should be unoccupied when density is low in the su-
perior habitat (the intercept in Figure 1b; McLoughlin et al., 2010; 
Morris, 1988, 1994).

A linear isodar often suggests an IFD, but does not preclude 
the IDD (Morris, 1994; Mosser, Fryxell, Eberly, & Packer, 2009). 
Under the IDD, competitive exclusion and interference by more 
dominant or experienced individuals reduces potential habitat 
quality for subordinates, such that an alternative lower density 
habitat might have equivalent fitness benefits (Morris, 1994). 
Interference from dominant, territorial individuals has the ef-
fect of reducing perceived fitness for subordinates (dashed lines 
in Figure 1c), and the adjustment to fitness caused by territorial 
interference is indicated by a mismatch between true and per-
ceived habitat quality (Figure 1c; McLoughlin et al., 2010; Morris, 
2003b). Accordingly, the IDD predicts unequal fitness between 
the two habitat classes for a given density (Morris, 1994). Under 
the IDD, an isodar can take either a straight-line shape (addi-
tive competition) or follow a logarithmic function (multiplicative 
competition; Knight et al., 2008; Morris, 1994). Because a linear 
isodar may still be observed under an IDD (Figure 1d), other ev-
idence may be needed to distinguish an IDD from an IFD, such 
as observed differences in survival, reproduction or growth rates 
between habitat classes. The IPD model offers an interesting al-
ternative hypothesis to IDD (Figure 1e,f). Under the IPD, access 
to a site is determined by first arrival and selection of the best 
available site. Whereas an IDD might produce a curvilinear iso-
dar (fit to log-transformed densities; Knight et al., 2008; Morris, 
1994, 2003a), the IPD often results in a specific nonlinear shape 
(Figure 1f) that distinguishes it from the IFD and IDD and likely 
indicates preemptive habitat selection (Morris, 1994; Pulliam & 
Danielson, 1991). Additionally, the specific shape of a nonlinear 
isodar can imply patterns that might otherwise go undetected. For 
example, an S-shaped (sigmoidal) isodar may reveal differences 
in the variance of site quality between two habitats, whereas an 
asymptotic isodar suggests saturation of a limited number of high 
quality sites that can result in niche-shifts or switching of pre-
ferred habitats (Morris, 1994).
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Evaluating density-dependent habitat selection using an iso-
dar approach has utility beyond simply distinguishing between 
ideal-free and ideal-dominant theoretical distributions. For ex-
ample, an isodar intercept different than zero, as in Figure  1b, 
can reveal differences in resource availability between habitats 
(quantitative differences), while a slope significantly different 
than 1 suggests differences in habitat structure (qualitative dif-
ferences; Morris, 1988, 1994, 2003a). These findings would have 
important conservation implications for many species, as they 
can indicate that a population is likely to achieve greater densi-
ties or increase more rapidly in one habitat type than another. In 
contrast, an intercept of zero, coupled with a slope of 1 indicates 
no apparent difference between habitat types (Morris, 1988). 
Testing theoretical habitat selection distributions can further re-
veal fundamental differences in how density-dependent habitat 
selection operates within a population (Rodenhouse, Sherry, & 
Holmes, 1997). An IDD or IPD, for example, can demonstrate the 
potential for mismatches between the realized and fundamental 

ecological niche, and may imply source–sink habitat dynamics 
(Pulliam, 1988, 2000). Under these circumstances, intraspecific 
competition and territoriality may have a strong influence on 
habitat selection processes (Pulliam, 1988; Pulliam & Danielson, 
1991), and species' presence or density may not be tightly cor-
related with components of fitness such as reproductive suc-
cess or survival (Uboni, Smith, Stahler, & Vucetich, 2017; Van 
Horne, 1983). Predictions of habitat suitability based on IFD 
are inappropriate in this case, and may lead to false conclusions 
(Mosser et al., 2009; Van Horne, 1983). Evidence of density- 
dependent habitat selection from an IPD or IDD also has strong 
implications based on predictions of a source–sink structured 
population (Morris, 2003a; Mosser et al., 2009; Pulliam, 1988). 
Territorial space-use distributions specifically suggest dispropor-
tionate individual contributions to population growth, leading 
to reduced effective population size (Falcy, 2015; Haché et al., 
2013). Such considerations become increasingly relevant in the 
context of endangered species conservation, recolonization 

F I G U R E  1   Theoretical fitness–density 
relationships and resulting isodars under 
the ideal-free distribution (IFD; a, b), the 
ideal-despotic distribution (IDD; c, d) 
and the ideal-preemptive distribution 
(IPD; e, f). In panel a, fitness declines 
as a function of density in two habitats 
of differing quality (solid lines, where 
habitat A is superior). The horizontal lines 
connect the densities at which fitness 
is equal in the two habitats. The pair of 
densities at these intersections produce 
the isodar in panel b; in this example, 
the inferior habitat (B) is not selected 
until habitat A reaches a certain density 
(density-dependent habitat selection). 
In panel c, the solid lines represent the 
quality of the habitats (similar to panel a), 
but territorial interference by dominant 
individuals causes reduced perceived 
fitness, altering the individual's habitat 
selection (dashed lines). The adjustment to 
fitness caused by territorial interference 
is demonstrated by connecting the true 
with perceived habitat quality (vertical 
lines). If individuals' perception of habitat 
is influenced by dominants (e.g. dashed 
horizontal lines indicating the habitat 
choice), they might select habitat of lower 
quality than they would otherwise, and 
fitness between habitat classes would no 
longer be equal. Panel e corresponds to 
fitness–density curves associated with 
differing site quality, where individuals 
preemptively select the best available 
site (Falcy, 2015; Morris, 1994). Figures 
adapted from Morris (1994)
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or reintroduction of large carnivore species and translocation  
projects.

Here, we explore competing hypotheses about the habitat 
selection of a large, territorial, predator of conservation concern 
(grey wolves Canis lupus) by comparing observations of densi-
ty-dependent habitat selection to that predicted by the IFD, 
IDD or IPD. To accomplish this, we applied isodar analysis to a 
20-year time series of observational data gathered during a pe-
riod of recolonization to the Upper Peninsula (UP) of Michigan, 
USA. Because of territorial behaviour at the pack level, we ex-
pected wolf isodars and fitness–density relationships to be more 
consistent with IDD (Figure  1c,d) or IPD (Figure  1e,f) than with 
IFD (Figure  1a,b). However, territorial species might behave ac-
cording to an IFD if new arrivals or dispersing individuals respond 
to cues about density from existing occupants and use alterna-
tive sites rather than challenge existing competitors (Fretwell & 
Lucas, 1969). This scenario is plausible because wolves advertise 
their presence vocally as well as by intensively scent-marking ter-
ritory boundaries (Mech & Boitani, 2010). Direct competition may 
be uncommon at relatively low densities because if some habitat 
sites are unoccupied, the risk of challenging current occupants 
might outweigh the cost of finding an alternative site, even if the 
alternative site is of slightly lower quality (e.g. Cassidy et al., 2015; 
Cubaynes et al., 2014). Although wolves' recolonization behaviour 
has been broadly studied, the role of density-dependent habitat 
selection and its implications for restored and expanding popula-
tions have not been previously addressed.

2  | MATERIAL S AND METHODS

2.1 | Overview

We implemented isodar analysis by observing how wolf density co-
varied spatially across three different classifications of habitat during 
the 20-year study period. We generated spatially varying estimates 
of density from observations of pack size and location using aerial 
radiotelemetry and ground track surveys, coupled with Bayesian 
state-space models to accommodate uncertainty in observed pack 
counts and estimates of territory size (Figure  2). Differences in 
habitat were identified by evaluating landscape features (e.g. prey 
density, human density, land cover type) with principal components 
analysis (PCA). We used PCA results in conjunction with a GLMM of 
wolf occurrence to establish the most important predictors of wolf 
habitat and used them as a basis for isodar analyses. For each isodar 
analysis, locations on the landscape were classified as belonging to 
either high- or low-quality habitat classes (habitat A vs. habitat B, 
per Figure 1). The three pairs of classifications represented low and 
high prey availability, low and high risk of human conflict and low 
and high preferred land cover classes (Figure 2) as demonstrated in 
Section 2.5. We evaluated isodars with respect to each habitat type 
independently, while also incorporating interactions between habi-
tat types.

2.2 | Study system and data collection

We conducted our study in the UP of Michigan during 1994–2013, 
a time period when wolves were recolonizing. Wolves primarily 
prey on white-tailed deer Odocoileus virginianus in this region, 
particularly in winter (DelGiudice, McCaffery, Beyer, & Nelson, 
2009; Vucetich et al., 2012), though seasonal variation in diet is 
known to exist (e.g. Gable et al., 2018). Deer abundance is often 
constrained by long winters with heavy snowfall (Potvin et al., 
2005). Many deer in the UP are partially migratory, especially at 
times and places when snow depth exceeds ~30  cm, leading to 
spatial variation in winter prey availability (O'Neil, 2017; Potvin 
et al., 2005; Witt, Webster, Froese, Drummer, & Vucetich, 2012). 
We live-captured wolves and fitted them with very high frequency 
radiocollars (Telonics, Inc., Mesa) during spring and summer each 
year (details in Appendix S1).

2.3 | Wolf pack sizes, territories and 
density estimation

To estimate wolf density each year within each grid-cell on the 
landscape, we first estimated the size and location of each pack 
using a combination of aerial radiotelemetry and ground tracking 
data. We quantified baseline pack territory boundaries using uti-
lization distributions (UDs; Worton, 1989) when radiotelemetry 
data were available, and minimum convex polygons from ground 
tracking data otherwise. We then derived spatiotemporal varia-
tion in density from Bayesian state-space models of pack counts 
and territory size. This modelling framework provides a system-
atic approach for analysis in the presence of imperfect observa-
tion by accommodating uncertainty and missing data with respect 
to the pack count and territory observation processes (Kéry et al., 
2009).

2.3.1 | Pack counts

We organized all pack observations into a data matrix with a row 
for each pack observed during the study period and a column for 
each year of the study. The elements of this matrix represented 
annual estimates of pack size, derived primarily from track sur-
veys and supplemented by aerial telemetry (Appendix S2). Each 
winter all passable roads were travelled by truck or snowmobile 
while snow conditions were suitable for tracking (typically be-
tween December and March). Trackers recorded all sign, such as 
territory markings, scat and tracks. During the earlier portion of 
the study (1994–2006), track surveys were conducted in each of 
the 21 individual survey units that collectively represent the entire 
UP, and packs were assumed to be detected at least once via the 
track surveys on an annual basis (Appendix S2: Figure S1). As sur-
vey data accumulated, effort was increased in areas where packs 
had been previously detected to obtain accurate counts. Roads 
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and trails were surveyed multiple times until accurate counts could 
be made (Appendix S2). An accuracy assessment of these methods 
was conducted during a separate 4-year study (2001–2005), where 
two independent wolf surveys were conducted simultaneously. 
The methods described here obtained similar counts as those from 
the more rigorous survey (described in Huntzinger, 2006; Vucetich 
et al., 2012), with an average difference of 4%. For the later por-
tion of the study period (2007–2013) the survey units were vis-
ited according to a stratified sampling design (Potvin et al., 2005; 
Appendix S2: Table S1). Pack territories were assigned ‘NA’ within 
the corresponding matrix element during the years following the 
change in sampling design, allowing these values to be imputed by 
state-space models (Section 2.4). Population size derived from the 
winter track survey was assumed to be a minimum count (Potvin 
et al., 2005).

2.3.2 | Territory boundaries

To estimate the area, location and boundaries of each pack territory, 
we developed pack UDs using radiotelemetry data and supplemented 
those data with track survey data. We located radiocollared wolves 
by fixed-wing aircraft weekly. Territories were typically monitored 
by aerial telemetry relocations from at least one radiocollared wolf in 
each pack. Territories were also visited during the tracking survey, al-
lowing approximate boundaries to be estimated when telemetry data 
were unavailable. We delineated territory boundaries each year using 
the following framework: If ≥30 telemetry locations were available 
for a pack during a year, we estimated its home range for that year, 
denoted t. If there were <30 locations for year t, but ≥30 locations 
were available over a 3-year time period (t − 1, t, t + 1), then we gener-
ated the pack's home range using locations from that 3-year period. 

F I G U R E  2   Diagram showing data and analytical steps taken to model spatiotemporal variation in wolf density and compare densities 
across time and among habitat characterizations using an isodar approach. In the first step, information on pack locations and size are 
combined on an annual time step from a combination of radiotelemetry and ground tracking data (annual census). Next, a state-space 
model was developed to incorporate uncertainty, missing data and imperfect observations of pack and territory sizes. Simulations were 
performed to generate multiple realizations of spatiotemporal wolf densities (100/year). Landscape attributes were informed by preliminary 
habitat analyses of continuous raster data indicating important predictors of wolf presence, and these were reclassified into discrete 
classes using values above and below the annual median value (high vs. low). Isodars were then simulated by calculating zonal means of wolf 
density within each discrete class for each habitat, and generating scatterplots of wolf density in these habitat classes across time (density-
dependent habitat selection). The analysis was applied to grey wolves in the Upper Peninsula of Michigan, USA, 1994–2013
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We used a fixed kernel density estimator to create a UD for each 
home range. The kernel bandwidth was estimated using the ‘plug-in’ 
method (Duong, 2007), after first removing outlying locations (≥5 km 
from territory; Fuller, 1989) and transient wolves (i.e. those that did 
not consistently occupy a territory). We defined the home range as 
the 95% volume isopleth from the UD. Home ranges and bandwidth 
estimators were analysed using packages adehabitatHR and ks in r 
3.2.2 (Calenge, 2006; Duong, 2007; R Core Team, 2015).

For cases when fewer data were available, we generated long-
term home ranges using a combination of telemetry locations and 
tracks from ground surveys. For example, if a home range had been 
generated for previous years, but the pack was only subsequently 
being monitored by track surveys, then we used the most recent te-
lemetry-based home range. Otherwise, if we could not obtain ≥30 
telemetry locations for a pack, we estimated its territory using a min-
imum convex polygon from all track survey locations across all years. 
Of all pack-year territory estimates (n = 1,616), 67% were created 
using telemetry data (>30 telemetry locations, n = 1,079). Due to in-
herent uncertainty in this approach, all subsequent territory bound-
aries were considered baseline estimates, with sizes and boundaries 
allowed to vary when making inference from state-space models.

2.4 | State-space models of wolf density

We implemented state-space models within a Bayesian analytical 
framework (Hostetler & Chandler, 2015; Kery & Schaub, 2011) to es-
timate wolf density across the study area while accounting for the 
knowledge that we could not obtain perfect observations of counts and 
territory sizes. The state-space model is a hierarchical model consisting 
of two sets of equations: one for the true, but unknown state (here, pack 
size), and the other to link the actual observations (pack counts) to the 
true process (Kery & Schaub, 2011; Royle & Dorazio, 2008). Denoting 
pack = k and annual timestep = t, our model for the true latent state was

where rkt represents pack-specific growth rate, while bk is a parameter 
for density dependence (also estimated at the pack level). This model 
follows the discrete time parameterization of the Gompertz model 
(Hostetler & Chandler, 2015; Koons, Colchero, Hersey, & Gimenez, 
2015), thus assuming population regulation at high relative densities. 
Following Koons et al. (2015), we re-specified this model on the log-
arithmic scale

with �k as the coefficient for bk, and �kt for rkt (growth rate on the log-
scale). We added a term � to model an expected growth rate from low 
density (e.g. at population level; Koons et al., 2015); each pack's growth 
rate was allowed to vary from the overall population growth rate, with 
the strength of density dependence also varying by pack. Pack-specific 
offsets to the overall expected growth rate were assumed to be drawn 

from a normal distribution, �kt∼Normal(�k, �
2
k
), with a mean annual 

growth rate �k and process variance �2
k
 allowing for environmental sto-

chasticity (Kéry & Schaub, 2011). The state-space model thus involved 
the process model xkt = f(xkt−1) + �kt, where f(xkt−1) incorporates the 
right hand side of Equation 2 as well as the process variance error term, 
while the model for pack observations (ykt) was ykt = g(xkt) + �kt, with a 
Poisson error distribution specified following Koons et al. (2015). This 
equation relates the counts back to the unobserved process, while ac-
counting for imperfect observation through the observation error term 
(Kéry & Schaub, 2011).

We assigned an uninformative normal prior distribution for 
initial pack size with truncation at 0. The prior distributions for �kt 
and �k were similarly uninformative (�k∼N(0, 10)), thus allowing 
the process model to be informed primarily by the data. We placed 
constraints on pack size so that they could not exceed unrealistic 
estimates (specified as the maximum observed pack size across all 
years). We included additional information in our model to account 
for uncertainty in territory size, where territory area (denoted A, in 
km2) was inferred from the best available information for pack lo-
cations. If telemetry data were adequate for a pack-year UD, then 
territory area was assigned a prior distribution specific to that pack: 
Akt ∼ Normal(Akt, �

2
Ak

). Otherwise, the prior distribution depended on 
the pack's long-term average area: Akt ∼ Normal(Ak, �

2
Ak

). If telemetry 
data were inadequate across all pack-years, then area was drawn from 
the distribution of all pack UDs informed by telemetry at the popu-
lation level: Akt ∼ Normal(A, �2

A
). Wolf density at the pack-year level 

was a derived parameter Dkt =
nkt

Akt

× 1,000 (wolves × 1,000 km−2).
We stored the full posterior distributions of all pack-year estimates 

from the state-space model for use in post-hoc analyses (see Section 
2.5, below). We ran three Markov chain Monte Carlo chains, storing 
every 5th sample from 50,000 model iterations following a 20,000 it-
eration burn-in period. We used JAGS 4.2.0 (Plummer, 2003) within r 
3.4.0 using jagsUI (Kellner, 2015). We graphically compared the derived 
posterior pack size time series with observed pack counts to verify that 
the 95% credible intervals (CRI) overlapped the observed pack counts 
(Appendix S2: Figure S2).

2.5 | Isodar analysis

We used posterior distributions of pack-year densities combined 
with landscape habitat data to perform isodar analysis, using a sto-
chastic simulation-based approach where we evaluated each isodar 
100 times and drew our inference from the most probable out-
comes. This was done to allow uncertainty with respect to pack-year 
counts, territory sizes and subsequent density to propagate through 
all proceeding analyses.

2.5.1 | Preliminary habitat analysis

Because isodar analysis requires comparisons of discrete habitat 
classes, we fit a preliminary GLMM to landscape habitat data as a 

(1)Nkt = Nkt−1 exp(rkt + bk(log(Nkt−1)),

(2)log(Nkt) = xkt = xkt−1 + � + �kxkt + �kt,
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basis for identifying different habitat classes. We used a logit link 
function, with presence or absence of a pack as the binary response 
variable, and treated year as a random intercept. This model could be 
interpreted as a resource selection probability function estimating 
the overall influence of habitat predictors across the time period of 
study. The predictor variables in this GLMM were the principal com-
ponent scores from three separate PCAs of correlated landscape 
predictors representing prey densities (buck harvest index and deer 
wintering complex habitat), human influences (road density, distance 
to highways, % impervious surface, % protected land) and land-
scape features (elevation, slope, forest-open edge, stream density). 
From this GLMM, we ranked habitat covariates by their effect size 
(Z-score) and delta score (predicted change in probability of selec-
tion corresponding to a unit change in predictor x). We selected the 
top three continuous predictors of habitat for subsequent analyses 
according to these rankings. Details about the preliminary habitat 
analysis are available in Appendix S3.

2.5.2 | Simulated isodars

We resampled from the posterior distributions of wolf density to 
construct 100 empirical isodars as follows: first, we drew a random 
sample from each pack-year posterior distribution of pack size, and a 
corresponding random sample from its posterior distribution of ter-
ritory size. Next, we produced a new pack-year territory boundary 
based on the difference between the area of the baseline pack-year 
polygon and the new randomly sampled territory area. We assigned 
the sampled pack size estimate to the new pack polygon, and cal-
culated wolf density at the pack territory level. After this was done 
for all pack polygons in the given study year, we combined all the 
new polygons and converted to raster format, ultimately generating 
100 realizations of spatially varying wolf density for each study year. 
This resampling process was completed using Python 2.7.2 and the 
ArcPy module for ArcMap 10.4 (Environmental Systems Research 
Institute, Inc.) and supporting code and data are archived in the 
Digital Repository of the University of Minnesota (DRUM; https://
doi.org/10.13020​/0p2p-j920; Bump, O'Neil, Vucetich, Hoy, & Beyer 
Jr., 2020).

To classify habitat types using the continuous habitat predictors, 
we reclassified the relevant predictors into paired bins representing 
values above and below the median for each predictor (e.g. Falcy, 
2015). We reclassified the three top-ranked predictors into ‘low’ and 
‘high’ paired habitat classes based on the 0–49th and 51st–100th 
percentiles for each predictor, while discarding the median values. 
We recomputed the zonal mean wolf density within high quality 
(habitat A) and low quality (habitat B) with respect to each of the 
three habitat predictors (prey density, human influence and land 
cover). To investigate interactions between predictors, we per-
formed a spatial intersection of the high- and low-quality classes 
for each pair of habitat predictors, and again computed zonal means 
within the intersected areas, thereby generating three additional 
isodars representing each pairwise interaction.

For each iteration within this process, we implemented isodar 
analysis using a scatterplot of the paired densities across the time 
series (Y axis = density in A, X-axis = density in B; see Figure 1b,d,f). 
We fitted linear, curvilinear and nonlinear models to each plot 
(Table 1), where the response variable (density in habitat A) repre-
sented the superior habitat based on the preliminary GLMM analy-
sis. We used leave-one-out cross validation to evaluate each of the 
models based on root-mean squared error (RMSE), with lowest error 
indicating best fit to the paired densities (Stone, 1977). We stored 
the results of the best-fitting isodar models for each iteration. We 
reported the top model formulations for each isodar, corresponding 
to paired densities for each habitat predictor and each interaction 
between habitat predictors. The top model for each isodar was the 
model that most frequently ranked highest, from each of the 100 
model fits. We plotted predictions based on the parameters and 
error estimates averaged across each top-ranked model.

2.6 | Wolf abundance estimation

We used the results of the state-space model to estimate overall 
wolf abundance and CRI for each year by summing the estimated 
number of wolves across all packs. Importantly, the application of 
the state-space model and the subsequent resampling of the pos-
terior distributions allowed us to quantify uncertainty in overall 

Model Formula
Theoretical model  
(Morris, 1994)

Linear (M1) Y = �0 + �1X + � IFD/IDD; consumer-resource 
or additive interference

Log-Log (M2) log (Y) = �0 + �1 log (X) + � IFD/IDD; continuous input or 
multiplicative interference

LogX (M3) Y=�0+�1 log (X)+� IPD; fewer sites in higher 
quality habitat

Asymptotic (M4) Y=�1+ (�2−�1) exp [−exp (�3)X] IPD; large differences in site 
quality between habitats

Logistic (M5) Y =
�1

1+ exp [−(X−�2)∕�3]
+ � IPD; unequal variances in site 

qualities between habitats

TA B L E  1   Linear, curvilinear and 
nonlinear candidate regression models 
for fitting theoretical isodars to annual 
snapshots of wolf density occurring in 
separate habitat types. Candidate models 
include linear or curvilinear isodars 
representing ideal-free (IFD) or ideal-
despotic (IDD) habitat distributions and 
nonlinear isodars representing ideal-
preemptive distributions (IPD; Knight et 
al., 2008; Morris, 1994)

https://doi.org/10.13020/0p2p-j920
https://doi.org/10.13020/0p2p-j920
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predicted abundance. We compared these overall abundance es-
timates with results of previous state estimates for the UP popu-
lation to ensure that we had made reasonable assumptions about 
territory occupancy and pack sizes (Appendix S2: Figure S3; 
Michigan Department of Natural Resources, 2015). We provide a 
demonstration of the spatiotemporal variation in wolf density in 
the online Supplementary files (Video S1). All geoprocessing steps 
were completed in ArcMap 10.4 (Environmental Systems Research 
Institute, Inc.).

3  | RESULTS

3.1 | Pack counts, density and abundance

Wolf abundance in the UP increased from 80 to 658 during the 
study (U.S. Fish & Wildlife Service, 2017). The number of packs 
detected by track surveys and telemetry observations increased 
between 1995 (n = 32), and 2006 (n = 103), when the population 

census transitioned to a stratified sampling design (Appendix S2). 
In the following years, we estimated that a maximum of 137 indi-
vidual pack territories (year = 2011) were present in the study area. 
Assuming that ≥2 wolves represented a pack, observations ranged 
from 2 to 18 wolves and increased over time, with annual mean 
counts per year ranging from 2.74 (SD = 0.86) to 5.14 (SD = 3.40). 
The average pack territory area estimated from telemetry was 
283.10 km2 (SD = 171.41), and 282.36 (SD = 158.33) using all data 
types (telemetry and track survey data).

Density-dependent state-space model estimates largely 
tracked observed data while incorporating additional uncertainty 
(e.g. estimating pack sizes when counts were unavailable), with 
annual average pack size estimates ranging from 2.52 (SD = 1.42) 
to 5.00 (SD  =  2.78). Total abundance estimates from the state-
space model were consistent with official estimates, with fitted 
point estimates of 83–657 and all 95% CRI overlapping official es-
timates for all years (Appendix S2: Figure S3). Population growth 
from low densities was strong across all packs (𝛼̂  =  0.41  ±  0.04; 
mean ± SD). Density-dependent regulation was evident for 95% of 

F I G U R E  3   Time series showing spatiotemporal variation in wolf density. Annual estimates of wolf density at the pack level were derived 
from state-space models applied to radiotelemetry and tracking data. Initial territory boundaries were determined by utilization distributions 
from telemetry and tracking data, and post-hoc simulations were used to incorporate uncertainty in both territory size and pack counts. 
Estimates are presented as 3- or 4-year averages (e.g. 1995–1997 through 2010–2013)
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packs (median 𝛽k < 0), and density dependence was predominantly 
negative across all packs (𝛽  = −0.28; 95% CRI = −1.05, 0.15). The 
population grew from 1995 to 2011 before apparently stabilizing 
(Appendix S2: Figure S3). Wolf density averaged across the study 
site was 1.97 wolves × 1,000 km−2 in 1995 and 14.41 × 1,000 km−2 
in 2013. Density varied spatially and temporally, with greatest den-
sities commonly occurring along the southwest border of the study 
area (>30 wolves × 1,000 km−2; Figure 3; Video S1).

3.2 | Habitat categorization

The GLMM used to preliminarily categorize habitat types revealed 
that the top three predictors of wolf probability of territory selection 
were indices of prey availability (PC1-prey, 𝛽  = 0.417, p < 0.001), human 
influence (PC1-human, 𝛽  = −0.244, p < 0.001) and land cover with 
high stream densities (PC2-land, 𝛽  = 0.379, p < 0.001; Appendix S3:  
Table S1). Prey availability was represented by distance to and propor-
tion of deer wintering complexes and annual buck kill reported from 
hunter surveys (PCA loadings reported in Appendix S3: Table S2).  

Human influence was represented by proportions of impervious  
surface, road density and the proportion of private versus public land 
(Appendix S3: Tables S2, S3). The principal component used for land 
cover was largely driven by stream densities, with greater stream 
densities associated with greater PC2-land values (Appendix S3:  
Tables S2, S3)

3.3 | Wolf density isodars

Wolf density differed between habitat types (Figure 4). More spe-
cifically, greater wolf density occurred with greater prey availability 
(PC1-prey; Figure 4a), lower human influence potential (PC1-human; 
Figure 4b) and greater stream density (PC2-land). By the end of the 
study, mean wolf densities exceeded 20 wolves × 1,000 km−2 where 
the land cover types favoured by wolves co-occurred (greater prey 
and stream densities, lower human influence; Figures 3, 4d–f). Isodars 
drawn from posterior distributions of wolf density within each pair 
of habitat classifications indicated that the relationships between 
wolf density in habitat A (superior habitat) and density in B (inferior 

F I G U R E  4   Empirical isodars of mean wolf densities occurring within contrasting habitat types representing low versus high human 
influence (a), prey availability (b), favorable land cover (driven by variation in stream density; c), and pairwise intersections between 
each different habitat category (d–f) in Upper Michigan, USA. Uncertainty in pack and territory sizes was incorporated into isodar 
analysis by plotting 100 realizations of the wolf density time series from posterior distributions of pack and territory size; posterior 
distributions were inferred from a hierarchical state-space model of wolf pack counts and territory sizes over the study's time  
series
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habitat) were generally best fit by curved isodar functions; pairwise 
interactions between the different habitat classes also supported 
curved isodar fits (Table 2; Figure 4). Cross-validation statistics of 

the linear and nonlinear model fits are summarized in Table 2. Based 
on RMSE and visual examination of resulting isodar plots, the non-
linear isodars were most consistent with the IPD (Knight et al., 2008; 
Morris, 1994), indicating that wolves apparently used a preemptive 
site selection tactic while colonizing the study area. More precisely, 
each isodar was best characterized by a sigmoidal (S-shaped) non-
linear function; this shape was most evident when prey availability 
was intersected with land cover characterized by high stream densi-
ties (Table 2; Figure 4). Nonlinearity was least evident for the human 
influence isodar model, though the best fit was still the sigmoidal 
nonlinear model (Table 2; Figure 4).

4  | DISCUSSION

We found evidence that the mechanism underlying density-depend-
ent habitat selection in wolves was most consistent with the IPD, 
indicating preemptive territorial selection of territories at the pack 
level. The primary indication of territorial habitat selection was evi-
dence of a nonlinear isodar for all three categorizations of habitat 
considered in our analysis, as well as for interactions between those 
categorizations (prey availability, human influence and land cover 
types; Figure  4). We observed strong density-dependent habitat 
selection, especially with respect to measures of prey availability, 
stream densities and interactions between these habitat indicators 
(Figure 4a,c,e) where significantly greater densities were observed in 
habitat A than in habitat B across the time series. These results are 
noteworthy for several reasons.

Populations are commonly assumed to be at equilibrium with their 
environments (McLoughlin et al., 2010; Yackulic, Nichols, Reid, & Der, 
2015), and habitat selection patterns are often presumed to follow 
the IFD (McLoughlin et al., 2010; Van Horne, 1983). However, ter-
ritorial species are more likely to distribute themselves according to 
IDD or IPD theory, and our results suggested this to be the case for 
wolves recolonizing a portion of their historical range. Considering 
the specific life history of wolves (strong territoriality and intraspe-
cific aggression; Cassidy et al., 2015; Cubaynes et al., 2014), we ex-
pected density-dependent habitat selection to occur in accordance 
with the IDD as opposed to the IFD. Instead, our analysis indicated 
that the IPD was the most appropriate theoretical model for our 
data. The IPD provides a reasonable theoretical framework for ter-
ritorial density-dependent habitat selection in wolves, because it 
may be interpreted as a type of IDD and does not necessarily pre-
clude dominant-subordinate behaviour (Haché et al., 2013; Pulliam & 
Danielson, 1991). Specific to wolves, preemptive site selection tactics 
and territorial cues such as howling and scent-marking could limit in-
traspecific conflict at low densities, thereby allowing the IFD or IPD 
to occur (Fretwell & Lucas, 1969). Moreover, territorial species do not 
always adhere to theoretical expectations and evidence from multi-
ple studies suggests that underlying distributions can lie anywhere 
along a spectrum from IFD to IDD (Haché et al., 2013). We speculate 
that the IPD may be the most appropriate model during the coloni-
zation phase of a territorial animal, whereas the IDD may be more 

TA B L E  2   Cross-validation rankings for linear, curvilinear and 
nonlinear isodar regression models comparing wolf densities in 
habitats with high versus low prey availability, human influence 
and favourable land cover, as well as pairwise interactions 
between each habitat classification. M1 and M2 represent linear 
or curvilinear isodars, whereas M3, M4 and M5 indicate nonlinear 
regression model fits (see Morris, 1994). Nonlinear or curved 
isodars suggest preemptive density-dependent habitat selection 
(Knight et al., 2008; Morris, 1994). Regression models were fit 
to 100 realizations of the density time series via simulation from 
state-space model posterior distributions of wolf density within 
each respective habitat class; the top-ranked model is highlighted in 
bold for each isodar fit

  Model
p(best-
ranked)

Mean 
RMSE

Habitat predictor

Prey availability M1 0.01 1.58

M2 0.00 1.68

M3 0.01 1.73

M4 0.33 1.41

M5 0.65 1.35

Human influence M1 0.23 1.01

M2 0.14 1.02

M3 0.00 1.98

M4 0.04 1.13

M5 0.59 0.98

Land cover (stream density) M1 0.08 0.9

M2 0.06 0.95

M3 0.00 1.94

M4 0.01 1.19

M5 0.85 0.78

Habitat interaction

Prey availability × human 
influence

M1 0.03 2.15

M2 0.12 2.13

M3 0.00 2.68

M4 0.02 2.06

M5 0.83 1.73

Prey availability × land cover 
(stream density)

M1 0.07 2.91

M2 0.00 3.42

M3 0.03 3.12

M4 0.01 3.30

M5 0.89 2.47

Land cover (stream density) × 
human influence

M1 0.04 2.01

M2 0.18 2.04

M3 0.00 3.00

M4 0.03 2.19

M5 0.75 1.88

Abbreviation: RMSE, root-mean squared error.



     |  11Journal of Animal EcologyO'NEIL et al.

likely when populations have reached an equilibrium (i.e. long-term 
growth rate ≈ 0) and density dependence has a stronger regulatory 
role. Although we could not confirm equilibrium in our study popula-
tion, we suspect that suitable habitat was likely saturated by the end 
of the study (O'Neil, Beyer, & Bump, 2019). Distinguishing between 
theoretical models of density-dependent habitat selection, as we did 
with isodar analysis, is a valuable objective for any population because 
the underlying distribution has important implications for population 
dynamics (Falcy, 2015; Mosser et al., 2009).

4.1 | Conservation implications

Habitat selection patterns following IPD/IDD are likely for recoloniz-
ing large carnivore populations in North America and Europe (Carter & 
Linnell, 2016). Some implications of IPD/IDD include the potential for 
source–sink stuctured populations (Morris, 2003a; Pulliam & Danielson, 
1991), and the application of predictive models to unoccupied poten-
tial habitats. First, source–sink population dynamics are generally not 
considered in management of wolves and other large carnivores, but 
are more likely to occur under IPD/IDD than IFD (Heinrichs, Lawler, & 
Schumaker, 2016; Mosser et al., 2009; Pulliam & Danielson, 1991). For 
example, it is thought that human offtake of wolves can reach 20%–
30% of the population without causing population decline (Adams, 
Stephenson, Dale, Ahgook, & Demma, 2008; Fuller, Mech, & Cochrane, 
2003; Gude et al., 2012; Murray et al., 2010). However, these conclu-
sions are primarily based on findings that assume closed populations 
(Creel & Rotella, 2010) and do not explicitly account for source–sink 
structured populations. Our results imply that human-caused mortal-
ity could contribute to source–sink dynamics by altering the fitness 
consequences of density-dependent habitat selection. This scenario is 
most likely to arise when two major elements of habitat selection are 
prey abundance and the risk of human-caused mortality, a common cir-
cumstance for populations of large carnivores. In such cases, density-
dependent mortality due to humans (Murray et al., 2010) and other 
factors would create an uneven landscape mosaic of fitness (O'Neil, 
Bump, & Beyer, 2017; Smith et al., 2010; Stenglein, Gilbert, Wydeven, 
& Deelen, 2015). If individuals respond to spatially varying mortality 
risk according to the IPD, the prediction would be that high-risk sites 
are selected only after low-risk sites have become occupied. Such an 
outcome could lead to high-risk sites acting as sinks where growth rate 
and density are suppressed by high rates of human-caused mortality, 
but populations are maintained by immigration from neighbouring sites 
(Adams et al., 2008; Stenglein, Gilbert, et al., 2015).

Our results confirm that prey availability and competition for 
prey, through preemptive occupation of high prey areas, are primary 
limiting factors in novel systems being recolonized by large carni-
vores. Further, assessment of isodars in occupied regions has utility 
for predicting densities in adjacent, unoccupied potential habitats. 
We demonstrated that an isodar approach can identify not only the 
attributes that influence population density, but also the strength 
and influence that density dependence has on habitat selection. 
For example, although we observed preemptive habitat selection 

patterns with respect to spatial variability in potential human impact, 
we also found that wolves appeared to exhibit stronger preemptive 
selection patterns with respect to increased prey availability, land 
cover with greater stream densities and interactions between these 
latter two habitat classifications. We suspect that stream densities 
were correlated with seasonal availability of alternative prey sources 
such as beavers (Castor canadensis; Gable & Windels, 2018; Metz, 
Smith, Vucetich, Stahler, & Peterson, 2012), while also implicating 
high quality hunting areas via travel corridors and increased prey en-
counter rates (Gable, Windels, Bruggink, & Homkes, 2016; Kauffman 
et al., 2007). For these reasons, we could hypothesize that large car-
nivore colonization to new areas can be predicted primarily by prey 
density or availability, provided limitations in prey availability can be 
detected. When limitations cannot be detected, which might be the 
case across large areas of potential habitat in the American west, 
large carnivore colonization may follow a pattern where human 
conflicts are the limiting factor (LaRue & Nielsen, 2008; Mladenoff, 
Sickley, Haight, & Wydeven, 1995), and future occupancy or den-
sity might be predicted solely by human densities or development. 
Existing patterns in density-dependent habitat selection can be use-
ful tools for predicting future densities and potential expansion of 
large carnivore populations. These approaches can produce spatially 
explicit information about habitat availability, initial and expected 
densities and potential future population dynamics that would be 
relevant to future land management, designations of critical habitat 
and promoting awareness of potential human conflict.

4.2 | Analytical implications

We analysed isodars from continuous landscape data by building 
from methodology where habitat types are initially considered based 
on prior information or biological hypotheses (Figure 2; Falcy, 2015). 
Discrete habitat categories (A vs. B in the isodar) are then deline-
ated using cutpoints representing statistical deviations away from 
the central value (Figure  2). Importantly, this approach facilitates 
the evaluation of multiple habitat components of the n-dimensional 
environmental niche via isodar analysis, presenting a unique oppor-
tunity to compare habitat preferences based on the strength of den-
sity-dependent habitat selection. We demonstrated how this can be 
done for individual habitat types, as well as for interactions between 
habitat types. This analytical approach, coupled with our findings of 
territorial and preemptive habitat selection by wolves, has intriguing 
potential when considering application to other study systems such 
as the Greater Yellowstone Ecosystem (GYE) of the western USA, 
where wolf and elk Cervus elaphus dynamics have been intensively 
studied since the reintroduction of wolves (Beschta & Ripple, 2016; 
Peterson, Vucetich, Bump, & Smith, 2014; Smith et al., 2010).

The role of density-dependent habitat selection has yet to 
be assessed as an element influencing space use by wolves and 
their cascading indirect effects in the GYE system (Peterson 
et al., 2014; Uboni, Smith, Mao, Stahler, & Vucetich, 2015; Uboni, 
Vucetich, Stahler, & Smith, 2015).  Our findings imply that wolves 



12  |    Journal of Animal Ecology O'NEIL et al.

in Yellowstone may exhibit territorial and density-dependent hab-
itat selection behaviour with respect to elk, a primary prey source 
throughout much of the region, especially the northern range. Elks 
are also likely to exhibit density-dependent habitat selection, but 
may conform to a more traditional IFD, where the intensity of use 
of secondary forage sources depends on the densities of elk using 
primary forage sources, as well as the availability of primary for-
age sources (a functional response in habitat selection; van Beest, 
McLoughlin, Mysterud, & Brook, 2016; van Beest et al., 2014). 
Importantly, density-dependent functional responses in habitat 
selection may contribute to observed changes and spatial patterns 
of browse intensity (e.g. trophic cascades) independently of preda-
tion pressure. However, density-dependent habitat selection by elk 
might also be influenced by wolves (Fortin et al., 2005; Kauffman 
et al., 2007; Kohl et al., 2018, but see Cusack et al., 2019). Evaluating 
density-dependent influences on habitat selection by wolves and elk 
in Yellowstone would be a key step toward further understanding 
the relative importance of wolves' influence on elk behaviour and se-
lection patterns. If wolf densities influenced elk density-dependent 
habitat selection, it would then become possible to make predictions 
about where and when cascading effects on vegetation communi-
ties should most likely occur under varying scenarios of wolf density 
(e.g. importance of spatial heterogeneity; Peterson et al., 2014). We 
provide a novel analytical framework to explore these influences.

4.3 | Analytical limitations

To help guide future development of analyses building from long-
term monitoring and census data, we acknowledge the challenges 
and limitations that we encountered when deriving spatiotemporal 
abundance information from broad, landscape-level data collection 
programs. First, although the effort and intensity of wolf monitoring 
in our study region was rigorous (Appendix S2; Potvin et al., 2005), 
we could not control for potential variability in detection rates of 
wolf territories and individual wolves (pack counts) across space and 
time. As a result, we acknowledge that annual estimates of territory 
presence and pack size were imperfect. To account for variation in 
detectability and improve estimates, a hierarchical modelling study 
design would be required, where pack size estimates would be mod-
elled based on repeated counts or visits to verify site occupancy 
(Royle & Nichols, 2003; Royle, 2004). Unfortunately, such a study 
design would require replicate visits across a spatially representative 
sample of potentially occupied or unoccupied sites, likely increasing 
the cost and effort of surveys. We found that state-space modelling 
was a powerful alternative approach when annual repeated count 
data were unavailable, because it accommodates both observation 
and process error and produces a plausible range of estimates given 
the available data (Kéry & Schaub, 2011). Importantly, state-space 
models in a Bayesian framework can accommodate missing values 
and are often strengthened with prior information.

Second, we demonstrated evidence of IPD in recolonizing wolves 
based on the shapes of isodars fit to densities among three different 

characterizations of habitat. While curved isodars indicate territorial 
distributions (Falcy, 2015; Morris, 1994) and asymptotic or sigmoidal 
isodars suggest strong evidence of IPD (Morris, 1994), differences in 
measures of fitness between habitat classes could provide additional 
or alternative evidence of dominant or preemptive habitat selection 
(e.g. Mosser et al., 2009). According to the IFD, differences in hab-
itat quality should manifest in differences in density among habitat 
classes while average fitness remains constant. In contrast, IPD or IDD 
should lead to differences in average fitness between habitat classes. 
Although we could not analyse metrics of fitness such as reproduc-
tive success in this study, analyses of adult survival within the same 
population indicated that survival varied spatially and was reduced in 
agricultural areas (O'Neil et al., 2017; Stenglein, Gilbert, et al., 2015). 
In addition, there were several observations of intraspecific killing in 
this population and adjacent populations (O'Neil, 2017; Stenglein et al., 
2015), suggesting territorial interference. These findings, combined 
with the results of isodar analysis in this study, suggest that wolves 
distribute themselves and select habitat territorially. Furthermore, 
wolves appear to follow a preemptive habitat selection pattern during 
recolonization at the landscape scale, with growing potential for des-
potic behaviour (IDD) as localized densities increase, leading to com-
petition for resources (Cassidy et al., 2015; Cubaynes et al., 2014).

5  | CONCLUSIONS

Evidence for preemptive habitat distributions is rare (Petty & 
Grossman, 2010; Sergio & Newton, 2003). Empirical evidence of a 
sigmoidal isodar can indicate complex fitness–density relationships 
across habitat gradients and reveal circumstances where preda-
tors may have strong impacts on local prey populations (detailed in 
Appendix S4). This scenario may be more common than generally 
appreciated, as large variance in territory or site quality is likely in 
habitats that are disturbed or fragmented. Our study documents non-
linear isodars for a large carnivore species, implying an IPD that is 
generally considered to be a precondition for source–sink population 
dynamics (Morris, 2003b; Pulliam, 1988; Pulliam & Danielson, 1991). 
Source–sink dynamics are likely where species exhibit rapid growth 
and occupy interspersed habitats of contrasting quality (Heinrichs 
et al., 2016). These conditions occurred within our study system 
and are likely for large carnivores in other systems, such as areas in 
North America and Europe where many large predator species are 
currently recolonizing their historic ranges (Carter & Linnell, 2016). 
Understanding preemptive habitat selection and its potential to 
occur in a source–sink system is important for conserving species of 
concern such as wolves, because source habitats contribute dispro-
portionately to population dynamics and are often difficult to identify 
(Heinrichs et al., 2016).
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