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The relationship between the rates of prey capture and predator population growth is
a fundamental aspect of predation, yet it is rarely measured for vertebrate predators.
For the isolated wolf population on Isle Royale, annual variation in kill rate explains
22% of the variation in wolf population growth rate. From the slope of this
relationship, we estimate that the production efficiency (ratio of production to
respiration) of wolves is between 0.5% and 1.5%. More generally, we assess
the relative extent to which wolf population growth rate is affected by density
dependence, prey availability (moose, Alces alces ), winter weather, and demographic
stochasticity. Prey availability explains the most variation in wolf growth rate (42%),
but this is only recognized after accounting for the influence of a disease-induced
population crash and age structure of the prey population (i.e. number of vulnerable
moose, �/9 years of age). Demographic stochasticity accounts for approximately
30% of the variation in wolf growth rate. This recognition is important, but
not surprising, given that the average population size of Isle Royale wolves is 22.
Previous work indicates that the effect of winter climate, as mediated through prey
vulnerability and kill rates, is substantial. This work indicates that the direct effect of
winter climate is weak, and explains only about 4% of the variation in wolf growth rate
(P�/0.10).
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The dynamics of consumer (predator) populations are

often expressed as functions of per capita rate of

consumption (Beddington et al. 1976), availability of

food (Bayliss and Choquenot 2002, Sibly and Hone

2002), consumer density (Royama 1992), or abiotic

variables (Coulson et al. 2001, Jonzen et al. 2002). To

the extent that consumption rate determines growth rate,

it is sensible to say that population dynamics are

determined by bottom-up processes. Decreases in the

explanatory power of consumption rate would likely

correspond to the increased influence of other processes,

such as territoriality, interspecific competition, klepto-

parasitism, disease, climate and other abiotic factors, or

demographic stochasticity.

To the extent that per capita consumption and

population growth rate of the consumer are linearly

related, the slope of the relationship provides an estimate

of production efficiency (Ginzburg 1998), which is the

ratio of production to respiration (Ricklefs and Miller

2000). Production efficiency is important because it links

population ecology and energy flux through ecosystems

(Odum 1969, Brown 1991).

Except for two important reviews on predatory and

parasitic arthropods (Beddington et al. 1976, Hassell

et al. 1976), assessments of the relationship between

consumption and the population growth of a predator

are rare. We are unaware of any such empirical assess-

ment for a vertebrate predator. In this paper, we assess
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the relationship between per capita kill rate (consump-

tion rate) and population growth rate for wolves in Isle

Royale National Park, USA. We also assess how the

population dynamics of these wolves are influenced by

abundance of prey and vulnerable prey, density depen-

dence, climate, and demographic stochasticity. This

analysis complements previous papers assessing how

the kill rate of Isle Royale wolves is affected by the

abundance of wolves and moose (Vucetich et al. 2002)

and pack size (Vucetich et al. 2004).

Field methods

Data were collected in Isle Royale National Park,

USA, an island (544 km2) in Lake Superior, where

wolves (Canis lupus ) and moose (Alces alces ) interact

essentially as an isolated single-predator-single-prey

system (Peterson and Page 1988). Immigration and

emigration are likely zero, or at worst negligible, for

both wolves and moose on Isle Royale. Moose comprise

more than 90% of the biomass in wolf diet (Peterson and

Page 1988). Other species capable of preying upon

moose are absent and hunting is prohibited on the

island.

The wolf population was censused annually (1959 to

2003) in January and February using fixed-wing aircraft

(Fig. 1A). Our confidence in census accuracy is high

because entire wolf packs are often visible at a single

location and time and we make several complete counts

during each winter. From the numbers of wolves, we

calculated the annual log-transformed growth rate of the

wolf population (�/ln[Nt�1]�/ln[Nt]). Moose abun-

dance was estimated annually from 1979 to 2003

by aerial survey (Fig. 1B), using fixed-wing aircraft

(Peterson and Page 1993). During 1958�/1991, moose

abundance was estimated by cohort analysis. Our

method of cohort analysis is similar to that described

by Solberg et al. (1999). Between 1979 and 1991,

estimates of moose abundance are available for both

aerial surveys and cohort analysis. The results presented

below are derived from cohort analysis derived estimates

during 1959�/1991 and aerial survey estimates during

1991�/2001. Nevertheless, the results are qualita-

tively identical when cohort analysis estimates are

replaced with aerial survey estimates during the period

of overlap.

Calves and moose greater than nine years of age

(hereafter old moose) may represent especially vulner-

able segments of the wolf population (Peterson 1977).

Because the age structure of the moose population is

quite dynamic, total moose abundance may not be a

good indicator of the abundance of vulnerable moose.

Thus, we will examine the influence of the abundance of

calves and old moose on wolf growth rate (Fig. 1B).

These data were derived from cohort analysis and

originally described in Peterson et al. (1998, 2004).

During 1971�/2001, kill rates were calculated for each

wolf pack during each winter session. Each kill rate was

based on approximately 44 days of observation (med-

ian�/44, interquartile range�/[38, 47]), during which

daily travel and location of kills for wolf packs were

determined from aerial observations of tracks in snow

(Mech 1966, Peterson 1977). (During winter wolves hunt

and travel in family groups called packs, Murie 1944,

Olson 1938.) Per capita kill rates were calculated for each

pack as the number of kills made by a pack divided by

the number of wolves in that pack divided by the number

of days during which that pack was observed. The per

capita annual kill rate for the population was estimated

as the average kill rate for all existing packs, weighted by

pack size. Additional details on these field methods are

reported elsewhere (Thurber and Peterson 1993, Peter-

son et al. 1998).

Previous assessments indicate that wolf�/prey interac-

tions are affected by snow conditions (Peterson and

Allen 1974, Peterson 1977, DelGiudice 1998) and the

north Atlantic oscillation (Post et al. 1999). The north

Atlantic oscillation (NAO) is a large scale fluctuation in

air pressure between the sub-tropical and sub-polar

regions of the north Atlantic that affects winter climate

Fig. 1. The abundance of wolves (A) and moose (B) in Isle
Royale National Park between 1959 and 2003. The lower panel
also shows abundance of calves and old moose (i.e.]/9 years of
age).
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in portions of northeastern North America and else-

where (Hurrell 1995). To assess the influence of these

factors on wolf population growth rate, we obtained

annual measures of cumulative snow fall (Nov.�/Apr.) in

nearby by Thunder Bay, Ontario (approximately 25 km

NW of Isle Royale) from Environment Canada

(www.ec.gc.ca); and values of the winter (Dec.�/Mar.)

NAO index from www.cgd.ucar.edu/�/jhurrell/nao.stat.

winter.html#winter.

Analysis and results

The influence of kill rate on population growth

During 1971�/2001, the per capita kill rate varied nearly

four-fold, from 0.44 to 1.69 kills per wolf per month (one

month is 365}/12 days), and per capita annual growth

rate (dP/Pdt) varied from�/0.53 to 0.76.

We began by assessing which of several plausible

forms best represented the relationship between popula-

tion growth rate and kill rate (Table 1). We selected the

best model on the basis of AICC (Akaike’s information

criterion, corrected for small sample size) and D (Burn-

ham and Anderson 1998, Anderson et al. 2000).

D equals the AICC for the model of interest minus the

smallest AICC for the set of models being considered.

By definition, the best model has a D of zero, and models

with DB/2 are generally considered worthy of con-

sideration. Of the models we assessed (Table 1),

two performed similarly well �/ the simple linear model

(D�/0.3; R2�/0.15; P�/0.03) and the linear model

with log-transformed kill rate (D�/0; R2�/0.16;

P�/0.02; Fig. 2).

We also assessed the direct effects of wolf density,

cumulative snowfall, and NAO on population growth

rate. For perspective, snowfall and wolf density indirectly

affect population growth rate insomuch as they affect

per capita kill rate (Vucetich et al. 2002, Vucetich and

Peterson 2004b). Accounting for these direct effects did

not result in more parsimonious models (i.e. D�/2.4;

Table 1). For additional context, the partial correlations

(rp, with respect to the best model in Table 1) between

wolf growth rate and wolf density (rp�/�/0.09, P�/0.65),

snowfall (rp�/�/0.04, P�/0.86), and NAO (rp�/�/0.01,

P�/0.94) were low and not statistically significant.

Next, we assessed models representing the hypothesis

that wolf population dynamics after the 1980 population

crash have been different than those prior to the crash

(Fig. 1A). The population crash was due in part to a

disease, canine parvovirus, which may have affected the

population until about 1990 (Peterson et al. 1998). The

population crash may also have exacerbated possible

negative consequences of already high rates of inbreed-

ing (Peterson et al. 1998). To assess changes in popula-

tion dynamics after 1980, we fit models with indicator

variables. For example, to model changes in the intercept

and slope associated with a simple linear relationship

between kill rate and growth rate, we constructed the

following model:

dP=Pdt�(b0�a0It)�(b1�a1It)kt (1)

where It is an indicator variable that equals 1 for t5/1980

and 0 for t�/1980. Models such as these may be

interpreted by letting bi represent the coefficient for

t�/1980, and by letting bi�/ai represent the coefficient

for t5/1980. Models with various combinations of

indicator variables performed less well than simpler

models without the indicator variables. Specifically,

R2�/20.0 and D�/4.1 for Eq. 1, R2�/19.5 and D�/1.5

for the model in which only the intercept changes after

Table 1. Performance of models predicting wolf population
growth rate (1971�/2001) from the per capita kill rate. The bs
and u are coefficients estimated by least squares; k is the per
capita kill rate. w is the natural logarithm of wolf abundance; s
is cumulative annual snowfall; NAO is the north Atlantic
oscillation; R2 is the proportion of total variation explained
by the model; D equals the Akaike’s information criterion
(AICC) for the model of interest minus the smallest AICC for
the set of models being considered. The best model has a D of
zero. WAIC is the AICC weight. The ratio WAIC,i: WAIC,j

estimates how much more support (i.e. likelihood ratio) the
data offer to model i than to model j.

Expressions for dP/Pdt R2 D WAIC

b0�/b1k 0.15 0.3 0.24
b0�/b1ku 0.16 2.7 0.08
b0�/b1k�/b2k2 0.17 2.4 0.09
b0�/b1k�/b2k2�/b3k3 0.18 5.0 0.03
b0�/b1ln(k) 0.16 0 0.29
b0�/b1ln(k)�/b2w 0.17 2.4 0.09
b0�/b1ln(k)�/b2w�/b3s 0.17 5.3 0.02
b0�/b1ln(k)�/b2w�/b3NAO 0.17 5.2 0.02
b0�/b1ln(k)�/b2NAO 0.16 2.6 0.08
b0�/b1ln(k)�/b2s 0.17 2.6 0.08

Fig. 2. The relationship between kills/wolf/month and log-
transformed growth rate of the wolf population on Isle Royale
between 1971 and 2001. The dashed line is the relationship
predicted by linear regression analysis and ignores the influence
of measurement error, the solid line is the linear relationship
that accounts for measurement error in the independent variable
(Eq. 2, 3), and the dotted line is the linear relationship between
the natural logarithm of kill rate and growth rate (Table 1).
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1980, and R2�/18.2 and D�/2.0 for the model in which

only the slope changes after 1980 (Table 1). Because our

estimates of kill rate only extend back to 1971, the poor

performance of these models may only reflect a lack of

data prior to the population crash of 1980. In the next

section, we will show that differences in dynamics before

and after 1980 are well supported.

Virtually all regression models employed in ecological

research require the assumption that the independent

variable (kill rate) is measured without error. However,

measurement (sampling error) in the independent vari-

able tends to yield underestimates of the magnitude of

the slope and coefficient of determination �/ the larger

the measurement error is, the greater the bias (Fuller

1987). Although statistical theories about how best to

perform regression in the presence of measurement error

are recent and in relatively early stages of development,

we consider a method of moments approach which likely

represents an improvement over ignoring measurement

error completely. More specifically, the measurement

error model that we used (Fuller 1987) is based on the

assumptions that the measurement error of each ob-

servation of the independent variable (i.e. kill rate) is

distributed: 1) normally with mean value of zero and a

variance of suu, and 2) independently with respect to the

dependent variable, magnitude of the independent vari-

able, and other measurement errors. As with traditional

regression models, this model requires no special ac-

counting for measurement error in the dependent

variable. For this model, the slope (b1), intercept (b0),

standard errors (sXX, see), and coefficient of determina-

tion (R2) are related to the sample variances (mXX, mYY)

and covariance (mXY), and variance of the measurement

(sampling) error (suu) as follows:

b1�mXY=(mXX�suu)
sXX�mXX�suu

see�mYY�b1mXY

b0�Y�b1X

R2�(mXY)2=(sXXmYY)

(2)

Details on this model are given by Fuller (1987).

Because the performance of the linear model (D�/0.3

for dP/Pdt�/b0�/b1k; Table 1; Fig. 2) was nearly

identical to that of the best fitting model (D�/0 for dP/

Pdt�/b0�/b1ln(k)), and because the parameters of the

linear model are associated with useful biological inter-

pretations, we conducted an assessment of measurement

error with respect to the linear model. Because

the per capita kill rate was estimated several times each

year (i.e. once for each pack), we used variation in kill

rate among packs each year as an estimate of sampling

error. As assumed by the regression model, the standard

error of each year’s kill rate and average of each year’s

kill rate was uncorrelated (P�/0.27). The interpack

standard error, averaged across all years, was 0.17.

The square of this value (0.03) was used to replace suu

in Eq. 2.

Using the regression method represented by Eq. 2 and

the observed data, the per capita growth rate is predicted

to be (Fig. 2):

dP=Pdt�0:50(kills=wolf=month)�0:44: (3)

The model represented by Eq. 3 is statistically significant

(P�/0.04) and explains 22% (�/R2) of the variation in

growth rate. Using the Fisher z transformation, we

estimated confidence intervals (CI) for R2 (Neter et al.

1989:531): the 50% CI is [0.12, 0.32], the 80% CI is

[0.05,0.42], and the 95% CI is [0.01,0.53]. Had measure-

ment error been ignored, the predicted values of the

slope and R2 would have been biased downward. In this

case, the estimated slope would have been 0.36 (rather

than 0.50, Eq. 3), and the estimated R2 would have been

0.15, rather than 0.22.

The slope of Eq. 3 is important because an estimate of

the net production efficiency of the wolf population can

be derived from the slope when it is expressed in terms of

kilograms of wolf produced annually per kilogram of

moose assimilated annually (Ginzburg 1998, Ricklefs

and Miller 2000). The average mass of an Isle Royale

wolf is 35 kg, the average mass of edible material is 295

kg per adult moose and 114 kg per calf, and approxi-

mately one third of all wolf kills during winter are calves

(Peterson 1977). Thus, assuming an assimilation rate of

90% (Golley 1960), the average mass of assimilatible

(digestible) material per moose killed is 211 kg. Based on

these values the estimated net efficiency is 0.69%9/0.20%

(95%CI). However, due to losses to scavengers and

(Vucetich et al. 2004) and depressed kill rates during

summer (Messier and Crete 1985), average annual rates

of assimilation could be much less than the rate

estimated during winter. If the annual consumption

rate was three quarters of the estimated kill rate, the

gross efficiency would be 0.92%9/0.26%. If consumption

was half the estimated kill rate, then the gross efficiency

would be 1.38%9/0.39%.

The influence of predator and prey density on

population growth

We consider several expressions for per capita growth

rate of the wolf population that include terms for wolf

abundance (W), moose abundance (M), and both W and

M (Table 2). Except where noted otherwise, the models

are expressed as functions of the natural logarithm of

wolf (w) and moose (m) abundance. We considered

(linear and non-linear) models including the influence of

only wolf abundance. Our non-linear representation

(i.e. dP/Pdt�/b0�/b1Wu) is equivalent to the theta-

logistic model Gilpin and Ayala (1973): dP/Pdt�/r

(1�/(P/K)u), where r is the maximum growth rate of
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the wolf population, K is the carrying capacity, and

u describes the degree of non-linearity between P and

dP/Pdt. We also considered (linear and non-linear)

models including the influence of moose abundance,

but not wolf abundance. Excluding wolf abundance from

some models permits one to distinguish mechanistic

explanation from phenomenological prediction. We also

considered models based on the ratio of moose to

wolves: dP/Pdt�/b0�/b1(M/W). This equation is equiva-

lent to an equation first proposed by Leslie (1948):

dP/Pdt�/r(1�/M/aW), where a is the ratio of moose to

wolves at equilibrium (Eberhardt 1997, 1998 for pre-

vious application of this equation to wolf dynamics). We

considered two models that include the expression, b0�/

b1exp(Mb2), which is equivalent to an expression

previously considered by May (1973:84):�/a�/c

(1�/e�dM), where a is the rate of population decline in

the absence of food, c describes the difference between

the maximum growth rate and a, and d describes

the change in growth with respect to the change in

prey abundance (Bayliss and Choquenot 2002). Of the

models described above, the most parsimonious model

included only a linear term for wolf density (Table 2).

However, because the intercept was not significant

(P�/0.94), we also considered a model with linear terms

for wolves and moose, but no intercept. This model was

most parsimonious (i.e. D�/0). Despite its relative

performance, this model explained only 14% of the

variation in wolf population growth rate. We also

considered models with wolf and moose densities in

previous years (i.e. time lagged models). These did not

outperform the best model reported in Table 2 (data not

shown).

We extended this analysis of dP/Pdt by assessing the

influence of abiotic variables (i.e. cumulative snowfall

and NAO), and the possibility that wolf population

dynamics after the population crash of 1980 differ from

those prior to the crash of 1980. Because there are many

models of this type to consider, we began by considering

a model that is fully saturated, with respect to the two

time periods:

dP=Pdt�(b0�a0It)�(b1�a1It)wt�(b2�a2It)mt

�(b3�a3It)st�(b4�a4It)naot (4)

where It is an indicator variable that equals 1 for t5/1980

and 0 for t�/1980. Terms with It represent hypotheses

that population dynamics prior to 1980 differ from those

after 1980. We also considered models that include: 1) all

the terms of Eq. 4 except for the terms describing abiotic

factors, 2) all the terms of Eq. 4 except those with

indicator variables affecting abiotic factors, and 3)

several models that result from the stepwise regression

algorithm (Table 3). The best of these models included

separate intercepts for the two time periods, separate

slopes for the influence of wolf density during the two

time periods, and no terms at all for moose, snow, or

NAO. This model explained 30% of the variation in wolf

growth rate. However, because kill rate is affected by

prey density (Vucetich et al. 2002), and because expres-

sions for predator growth should include the variables

that affect kill rate (Ginzburg 1998), preference should

be given to another model that performed reasonably

well (D�/2.3; R2�/0.31) and includes a term for moose

(Fig. 3, 4):

dP=Pdt�1:21�0:96It�(�0:59�0:38It)wt

�6:69�10�2mt (5)

Table 2. Performance of models predicting wolf population
growth rate (1959�/2001) from the densities of wolves and
moose. W is wolf abundance, w is the natural logarithm of W, M
is moose abundance, and m is the natural logarithm of M. See
Table 1 for definitions of other symbols.

Expressions for dP/dt R2 D WAIC

b0�/b1w 0.12 1.0 0.194
b0�/b1wu 0.12 4.1 0.041
b0�/b1m 0.05 4.3 0.038
b0�/b1mu 0.05 6.7 0.011
b0�/b1(M/W) 0.10 1.9 0.127
b0�/b1w�/b2m�/b3(M/W) 0.15 1.9 0.125
b0�/b1exp(Mb2) 0.06 6.9 0.015
b0�/b1exp(Mb2) �/ b3W 0.14 5.0 0.027
b0�/b1w�/b2m 0.14 2.4 0.096
b1w�/b2m 0.14 0 0.325

Table 3. Performance of models predicting wolf population growth rate (1959�/2001) from the densities of wolves and moose and
abiotic variables. It is an indicator variable that equals 1 for t5/1980 and 0 for t�/1980. Terms with It represent hypotheses that
population dynamics prior to 1980 differ from those after 1980. See Table 1 for definitions of other symbols.

Expressions for dP/dt R2 D WAIC

b1w�/b2m 0.14 3.7 0.048
b0�/a0It�/(b1�/a1It)wt�/(b2�/a2It)mt�/(b2�/a2It)st�/(b2�/a2It)NAOt 0.36 15.0 B/0.001
b0�/a0It�/(b1�/a1It)wt�/(b2�/a2It)mt�/b2st�/b2NAOt 0.32 4.3 0.035
b0�/a0It�/(b1�/a1It)wt�/(b2�/a2It)mt 0.32 10.5 0.002
b0�/(b1�/a1It)wt 0.25 0.2 0.273
b0�/a0It�/(b1�/a1It)wt 0.30 0 0.304
b0�/a0It�/(b1�/a1It)wt�/b2mt 0.31 2.3 0.142
b0�/a0It�/(b1�/a1It)wt�/(a2It)mt�/(a2It)st 0.33 3.8 0.045
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Since the canine parvovirus outbreak in 1980, wolf

dynamics appear more density dependent and the

predicted equilibrium size has been lower. Fluctuations

in moose abundance account for only�/1% of the

variation in growth rate, and wolf population growth

rate increased by only 0.03 as moose abundance is

increased from its lower quartile (815) to its upper

quartile (1313). Using Eq. 5 as a reference, the partial

correlations (rp) associated with cumulative snowfall

(rp�/0.05, P�/0.76), and NAO (rp�/�/0.02, P�/0.90)

were very weak.

The influence of vulnerable prey on population

growth

We considered several forms of dP/Pdt expressed in

terms of the log-transformed abundances of wolves (w),

old moose (o), and calves (c). Again, because there are

many models of this type to consider, we began by

considering a model that is fully saturated with respect

to the time periods before and after the 1980 population

crash:

dP=Pdt�b0�a0It�(b1�a1It)wt�(b2�a2It)ot

�(b3�a3It)ct�(b4�a4It)st

�(b5�a5It)naot (6)

We also considered models that include: 1) all the terms

of Eq. 6 except for the terms describing abiotic factors,

2) all the terms of Eq. 6 except for the terms with

indicator variables that describing abiotic factors, and 3)

several models that result from the stepwise regression

algorithm (Table 4). Of these models, the best was:

dP=Pdt�0:23�0:75wt�(0:36�0:12It)ot

�9:9�10�4st (7)

This model also explained 56% of the variation in wolf

growth rate (Fig. 4, 5). More wolves were supported by a

given number of old moose prior to the population crash

Wolf abundance (wolves/1000 km2)

P
o
p
u
la

ti
o
n
 g

ro
w

th
 r

a
te

Fig. 3. The influence of wolf abundance on population growth
rate prior to the wolf population crash (1959�/1980;
open circles, dotted line) and after the population crash
(1981�/2001; filled circles, solid line). Lines are predictions from
the best model (i.e. D�/0) in Table 3.

Fig. 4. Observed (solid line with circles) and predicted popula-
tion growth rates for Isle Royale wolves. The dotted line
represents predictions from Eq. 5, which is based on wolf and
moose densities. The dashed line represents predictions from
Eq. 7, which is based on the abundance of old moose.

Table 4. Performance of models predicting wolf population growth rate (1959�/1995) from the densities of wolves and vulnerable
prey (calves and old moose) and abiotic variables. ot is the natural logarithm of old moose (�/9 years of age) abundance, and ct is the
natural logarithm of calf abundance. See notes in Tables 1 and 3 for definitions of other symbols.

Expressions for dP/dt R2 D WAIC

b0�/a0It�/(b1�/a1It)wt�/(b2�/a2It)ot�/(b3�/a3It)ct�/(b4�/a4It)st�/(b5�/a5It)naot 0.594 24.3 B/0.001
b0�/a0It�/(b1�/a1It)wt�/(b2�/a2It)ot�/(b3�/a3It)ct 0.551 10.3 0.002
b0�/a0It�/(b1�/a1It)wt�/(b2�/a2It)ot�/(b3�/a3It)ct�/b4st�/b5naot 0.585 15.6 B/0.001
b0�/b1wt 0.094 17.5 B/0.001
b0�/b1wt�/(a2It)ot 0.254 13.0 0.001
b0�/b1wt�/(b2�/a2It)ot 0.515 0.2 0.368
b0�/b1wt�/(b2�/a2It)ot�/b4st 0.555 0 0.408
b0�/b1wt�/(b2�/a2It)ot�/b3ct�/b4st 0.566 2.2 0.135
b0�/b1wt�/(b2�/a2It)ot�/b3ct 0.516 3.1 0.085
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(1959�/1980), than after (1981�/1995; Fig. 5). Wolf

abundance accounts for 10% of the variance in wolf

population growth rate, and the abundance of

old moose account for 42% of the variance in wolf

population growth rate. Although Eq. 7 suggests

the direct influence of snow on wolves is negative,

it accounts for only about 4% (P�/0.10) of the va-

riation in wolf population growth rate. Using Eq. 7

as a reference, the partial correlations with calves

(rp�/�/0.16, P�/0.39) and NAO (rp�/0.01, P�/0.97)

were weak.

The influence of demographic stochasticity on
predator growth

Demographic stochasticity arises from chance realiza-

tions of individual probabilities of survival and repro-

duction, and its importance tends to increase with

decreasing population size (Lande 1993). Here, we assess

the portion of the variation in wolf population growth

rate that is attributable to demographic stochasticity.

The variance in population growth rate can be decom-

posed into several components (Saether et al. 2000,

Bjørnstad and Grenfell 2001): Var[rt]�/(s2
d)N�1�/s2

e,

where, rt�/ln(Nt�1)�/ln(Nt), N is population size,

(s2
d)N�1 is the variance attributable to demographic

stochasticity, and s2
e is the variance attributable to

environmental stochasticity (e.g. abundance of prey,

climate). The demographic variance can be further

decomposed, to yield:

Var[rt]�Vardemo[s]�Vardemo[m]�s2
e (8)

where Vardemo[s] and Vardemo[m] are the variances

attributable to demographic stochasticity in survival

and reproduction, respectively.

We obtained annual estimates of Vardemo[s] and

Vardemo[m] for most years between 1971 and 2003

from field data on the number of pups (that survive to

their first winter) that were produced by each wolf in

each year, and from data on the number of wolves that

died each year. These data were presented in Peterson

and Page (1988) and Peterson et al. (1998). Estimates of

demographic variance were also based on analytical

procedures developed by Fox and Kendall (2002).

Demographic stochasticity in survival

The demographic variance associated with survival is

(Fox and Kendall 2002):

Vardemo[st]�(Vs;t�Var[st])=Nt (9)

where Nt is population size in year t, Vs,t is the sampling

demographic variance in survival in year t, and Var[st] is

the variance in survival probabilities among individuals

within the population. We estimated Vardemo[st] for each

of 30 years between 1971 and 2002 (our field data were

inadequate for estimating Eq. 9 for two years). Each

estimate was made by first replacing Vs,t in Eq. 9 with an

estimate of the binomial sampling variability associated

the estimated average survival rate. Specifically, we

replaced Vs,t with (St/Nt)(1�/(St/Nt)), where St is the

number of wolves that survived year t, and Nt is the

number of wolves at the beginning of year t.

To estimate Var[st] we need to account for systematic

differences in survival probability for different types of

wolves. For a wolf population in a homogenous environ-

ment, the most important source of variance in survival

probability is its social status. The survival probability of

dominants (pdom) is greatest, the survival probability of

non-territorial wolves (pnonter) is least, and survival

probability of subordinant wolves (pnonter) is intermedi-

ate. We can estimate Var[s] as:

Var[s]�[Ndom(pdom�p)2�Nsub(psub�p)2

�Nnonter(pnonter�p)2](N�1)�1 (10)

where p is the survival rate averaged across all indivi-

duals, and the subscripts, t, have been suppressed for

ease of reading. At one extreme, we could assume that

Var[s]�/0. This is to assume that pdom�/psub�/pnonter, or

that there is no variance reduction (sensu Fox and

Kendall 2002). If were we to make such an assumption,

then the proportion of variance that is attributable to

demographic stochasticity in survival (i.e. Vardemo[st]/

Var[rt]), averaged across years, is 0.093 (interquartile

range�/[0.06, 0.12]). At the other extreme, we could

assume that: 1) psub is equal to the overall average

survival rate, p (�/St/Nt), 2) pdom is equal to psub�/0.25,

W
o
lv

e
s

Moose > 9 years of age

Fig. 5. The influence of abundance of vulnerable prey
(i.e. old moose,�/9 years old) on wolf population growth rate
prior to the wolf population crash (1959�/1980; filled circles,
solid line) and after the population crash (1981�/2001; open
circles, dotted line). Lines represent best fit regressions. This
model corresponds to Eq. 7 and the best model (i.e. D�/0) in
Table 3.
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but constrained to be no greater than one, and 3) pnonter

is equal to pnonter*, where pnonter* is the value of pnonter

required to balance p�/(pdomNdom/N)�/(psubNsub/N)�/

(pnonterNnonter/N), which is the equation representing the

overall survival rate in year t. We also constrain pnonter to

be greater than 0.1. For example, consider a representa-

tive year (i.e. 1985) during which the overall survival rate

was 0.73 (�/p�/St/Nt�/16/22). Thus, we set psub equal

to 0.73, and pdom equal to 0.98 (�/0.73�/0.25). Given

these values for psub and pdom, and given that in 1985

there were 6 dominant wolves, 13 sub-ordinate wolves,

3 non-territorial wolves, 0.30 is the value of pnonter that

yields an overall survival rate of 0.73. For 1985, we

applied these values to Eq. 10 and obtain Var[s]�/0.044.

Using Eq. 9, we obtain Vardemo[st]�/((0.73)�/(1�/0.73)

�/0.044)/22�/6.96�/10�3 for the year 1985. To obtain

an estimate of the proportion of variation in annual

growth rate that may be attributable to demographic

stochasticity in survival we calculated Vardemo[st]/

Var[rt](�/6.96�/10�3/0.086�/0.081), where Var[rt] is

the sample variance of wolf population growth rate

during the period 1971�/2002.

Averaged across years, the assumptions described

above yield pdom�/0.98, pnonter�/0.73, and psub�/0.53.

Survival differences in real a wolf population (that are

not harvested or expanding) are not likely to exceed this.

Also for this set of assumptions, the value of Vardemo[st]/

Var[rt], averaged across years, is 0.081 (interquartile

range�/[0.06, 0.11]). Conveniently, Vardemo[st]/Var[rt]

does not appear to be overly sensitive to Var[s]. That

is, the value of Vardemo[st]/Var[rt] which ignores the

variance reduction effect (0.093) does not differ much,

in this case, from the value (i.e. 0.081) which reflects an

anticipated upper limit for the variance reduction effect.

Nevertheless, because we want to minimize the risk of

overestimating the influence of demographic stochasti-

city in survival, we take 0.081 to be a useful estimate for

the average proportion of variance in annual population

growth rate that is attributable to demographic stochas-

ticity in survival.

Demographic stochasticity in reproduction

The variance in annual population growth rate that is

attributable to demographic stochasticity in reproduc-

tion is (Fox and Kendall 2002):

Vardemo[mt]�(Vm(E[mt])

�1=2Vm(E[mt])ƒVar[mt])=Nt (11)

where Nt is population size in year t, Vm(E[mt]) is the

sampling variance in reproduction for an individual with

average reproduction (i.e. E[mt]) for year t, Vm(E[mt])ƒ is

the second derivative of the mean-variance relationship,

and Var[mt] is the variance in reproduction among

individuals in the population in year t. Ideally, one

would estimate Vardemo[mt] for the entire population;

however, doing so would require accounting for the

covariance in reproduction between males and females.

Because a means for calculating this covariance is not

possible, Vardemo[mt] might usefully be calculated for

females only (Saether et al. 2000), where the contribution

of female pups that survive to winter by each adult

female is the number of pups they produce which survive

to their first winter, divided by two (we assume half the

pups are females). Though useful, this approach likely

underestimates Vardemo[m] (Lande et al. 2003: 11).

We estimated Vardemo[mt] for the females of the

population for each of 26 years between 1971 and 2002

(For 6 years, our field data were inadequate for estimat-

ing Vardemo[mt]). We estimated E[mt] and Var[mt] as the

sample mean and sample variance of the number of pups

(divided by 2) produced by each female in the popula-

tion in year t (that survive to nine months of age).

We divide by 2 as a means of separating the reproductive

contribution of females from males. We estimate

the mean�/variance relationship by first assuming that

dominant wolves in year t have the same expected

reproduction, and then by plotting the series of observed

population means values of mt for these dominants

against Vm, the series of among-individual variances

in mt. The best-fitting function to this data was

Vm�/0.456m0.0173 and the second derivative of this

expression is Vmƒ�/�/0.00775m�1.983.

Using Eq. 11 and the estimating procedures describe

above, the estimated proportion of variance that is

attributable to demographic stochasticity in reproduc-

tion (i.e. Vardemo[mt]/Var[rt]), averaged across years, is

0.259. The interquartile range was [0.21, 0.30].

Because our individual estimates of Vm are based on

relatively small sample sizes, we also estimated Vm based

on plausible theoretical considerations. Specifically,

we assumed that litter size is distributed according to a

Poisson distribution truncated at m�/6, the largest

litter size for Isle Royale wolves, and that the number

of females in the litter follows a binomial distribution

with an expected value of 0.5. For this assumption,

we estimated Vm by repeatedly sampling from this

truncated Poisson distribution for different mean values

of m (�/1, 2,. . ., 6). For this approach, the mean value

of Vardemo[mt]/Var[rt] was 0.153 for the theoretical

approach, the interquartile range was [0.10, 0.19].

To estimate the overall contribution of demographic

stochasiticy to the variance in population growth,

we added the contribution of survival (Eq. 9) and

reproduction (Eq. 11). Although there are reasons

to prefer the empirical approach for estimating the

contribution of demographic stochasticity in reproduc-

tion (i.e. Vardemo[mt]/Var[rt]�/0.259), the theoretical

approach (i.e. Vardemo[mt]/Var[rt]�/0.153) also has merit.

Moreover, we wish to minimize the risk of overestimating

the overall influence of demographic stochasticity.
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Therefore, we simply suggest that demographic stochas-

ticity contributes between 23% (�/0.153�/0.081) and

34% (�/0.259�/0.081) of the observed variation in

population growth rate.

Discussion

The most important predictor of wolf growth rate is the

abundance of old moose (i.e.�/9 years). Provided that

one accounts for the disease-induced population crash of

1980, the number of old moose explains�/42% of the

variation in wolf growth rate (Fig. 5, 6). Age-dependent

predation is likely more complex than previous analyses

suggest (Hastings 1983, 1984). Moreover, our work

suggest that age-dependent predation is likely more

important than is generally recognized. Nevertheless,

virtually all management-oriented predictions about

wolf�/ungulate systems ignore age structure in the prey

population (Messier 1994, NRC 1997, Bergerud and

Elliott 1998, Eberhardt et al. 2003).

Calf abundance, which reflects another important

aspect of prey age structure, does not appear to

importantly influence wolf population growth rate

(Table 4). From this finding arises the need for several

considerations. First, we estimate calf abundance in

January when calves are about nine months old. It

may be that wolf population growth rate is dependent on

calf abundance during summer (i.e. June through Sept),

but calf abundance in summer and winter may be

unrelated because of summer predation and mortality.

Alternatively, as our results suggest, predation may not,

in fact, be an important influencer of wolf population

dynamics, because the caloric value of a calf carcass is

substantially less than for an adult carcass. Thus, it may

be that the consequences of calf predation are relatively

unimportant to wolf population dynamics, but quite

important to moose population dynamics.

The second most important source of variation in

population growth rate is demographic stochasticity,

which accounts for approximately 30% of the variation

in wolf growth rate (Fig. 6). For emphasis, the fluctua-

tions caused by demographic stochasticity are inherently

unpredictable (in some sense like the influence of

climate), but it cannot be said that this variation is

unexplained. It is explained by demographic stochasti-

city (Goodman 1987). Of the variation that may be

attributable to biotic or abiotic processes (but not

demographic stochasticity), 60% may be attributable to

the abundance of old moose (0.60�/0.42/(1�/0.30)). For

additional context, the perturbations caused by demo-

graphic stochasticity in wolves may have little influence

on moose dynamics, because moose growth rate is only

modestly affected by the variation in wolf abundance

(Vucetich and Peterson 2004).

Much of the variation in wolf growth can be explained

only if the population crash of 1980 is taken into account

(Table 3, 4). After the population crash, carrying

capacity decreased, the strength of density dependence

increased, and the influence of old moose decreased

(Eq. 5, 7; Fig. 3, 5). Mechanistically, these changes could

result from reduced attack rate (Holling 1959) and (or)

decrease efficiency of conversion. Insomuch as the

population crash was precipitated by disease (i.e. canine

parvovirus, CPV-2), our analysis joins a growing list of

examples illustrating the general importance of disease

impact on vertebrate population dynamics (Packer et al.

1999, Galvani 2003, Male 2003). However, some ob-

servations could indicate that disease alone cannot

account for the observed dynamics. First, because the

number of wolves per moose was very high in 1980;

nutritional stress and intraspecific, interference competi-

tion may have accounted for some of the decline

population. Second, the population crash included

substantial adult mortality (Peterson et al. 1998).

Although CPV-2 substantially reduces pup survival, it

is uncertain whether CPV-2 could have accounted for all

the adult mortality that was observed (Kreeger 2003),

Third, wolf exposure to CPV-2 ended by 1990 (Peterson

et al. 1998). Finally, the Isle Royale wolf population is

highly inbred (Peterson et al. 1998). It is plausible that

the observed dynamics reflect a strong interaction

between disease and inbreeding (Acevodo-Whitehouse

et al. 2003).

Fig. 6. Comparisons among several models (Eq. 3, 5, 7) of the
proportion of annual variation in wolf population growth rate
attributable to different factors. Each bar represents a different
model. The kill rate model corresponds to Eq. 3 and Fig. 2. The
wolf, moose model corresponds to Eq. 5 and Fig. 3. The wolf,
old moose model corresponds to Eq. 7 and Fig. 5. The
contribution of demographic stochasticity is equal for all
models and based on the calculations described in the text.
The amount of variation attributed to unidentified sources is the
unexplained variation (i.e. 1�/R2) minus contribution of demo-
graphic stochasticity.
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The indirect influence of winter climate on wolf

population growth rate is important, insomuch as winter

climate is an important predictor of kill rate (Vucetich

and Peterson 2004b) and prey abundance (Mech et al.

1987, Vucetich and Peterson 2004a). However, after

accounting for these indirect effects, the direct effect of

winter climate on wolf population growth rate appears

to be of little or no importance (Fig. 6). In fact, because

deep snow can sometimes inhibit the mobility of wolves,

it is sensible that increased snowfall, per se, may actually

have a slight negative impact on wolf growth rate

(Eq. 7). This clarifies a previous analysis suggesting

that wolves are more influenced than moose by the

combination of direct and indirect influence of winter

weather (Post et al. 1999, Post and Forchhammer 2001).

Moreover, the direct and indirect influence of winter

climate on moose growth is probably more important

(Post and Forchhammer 2001, Vucetich and Peterson

2004). Recent studies suggest that, relative to biological

factors, climate may commonly have a substantial

influence on population dynamics (Ottersen et al. 2001,

Stenseth et al. 2002). New insights are likely to arise

from focusing more on the discernment between direct

and indirect manifestations of climate, and between

statistical patterns and mechanisms through which

climate operates.

Many conventional theories of predation assume that

predator growth rate depends on consumption rate.

For many wolf�/prey systems, winter kill rate represents

the only means of estimating consumption rate. For the

population growth rate of Isle Royale wolves, winter kill

rate explains only about half of the variation that

is explained by the abundance of old moose (i.e. 0.22

vs 0.42). The rate of consumption may be more

important than recognized if winter and summer kill

rates are poorly correlated (Jedrzejewski et al. 2002), and

(or) kill rates are poorly correlated with consumption

rates because of losses to scavengers (Vucetich et al.

2004). Applying population models based primarily on

density-dependent kill rates for the management and

prediction of wolf�/prey dynamics (Messier 1994, Boyce

1995, Eberhardt and Peterson 1999) seems of limited

value to the extent that wolf growth is poorly predicted

by kill rate (Fig. 2), and to the extent that kill rate is

poorly predicted by densities of predator and prey

(Vucetich et al. 2002).

Because wolves are highly territorial, it is noteworthy

that growth rate does not depend directly on wolf density

(Eq. 3). Although direct density-dependent predator

growth may be an important stabilizing mechanism for

predator�/prey systems (Rosenzweig and MacArthur

1963), ratio-dependent kill rate (i.e. kill rate depends

on the ratio of prey to predator) may be the important

stabilizing force of the predator�/prey dynamics on Isle

Royale (Vucetich et al. 2002).

Per capita growth rate of the Isle Royale wolf

population appears to increase linearly with the rate at

which wolves kill moose (Fig. 2). The slope of the

consumption-growth relationship, suggests that the gross

production efficiency of wolves is likely between 0.5%

and 1.5%. To our knowledge, the only estimate for

production efficiency of a large carnivore is also for Isle

Royale wolves but is based on crude estimates of

biomass and vital rates of the Isle Royale wolf and

moose population (Colinvaux and Barnett 1979). This

estimate was 4.9% (precision was not calculated). In

contrast with this earlier value, our revised value is

consistent with the previously observed inverse relation-

ship between production efficiency with trophic position

(Grodzinski and French 1983), and not inconsistent with

the notion that efficiency is independent of body size

(Hendriks 1999). For context, among small mammals

populations, average efficiencies are: 0.7% for insecti-

vores, 2.3% for granivores, 2.6% for omnivores, and 3.4%

for herbivores (Grodzinski and French 1983). To our

knowledge, the only other estimate for a carnivorous

mammal is the least weasel (Mustela rixosua , 2.34%,

Humphreys 1979).

We conclude with a methodological note. Linear

and non-linear regression is a fundamental aspect of

ecological research. Regression coefficient estimates

may be biased by measurement error, which is pervasive

in ecological data. Nevertheless, most ecological studies

ignore the influence of measurement error in indepen-

dent variables (two exceptions include Ludwig and

Walters 1981 and Carpenter et al. 1994). Our work

illustrates a moderate effect of measurement error on

regression parameter estimates. Because theories that

include measurement error are beginning to become

accessible to ecologists (Fuller 1987, Ruppert et al. 1995,

Cheng and Van Ness 1999), study plans for ecological

research should routinely include estimates of measure-

ment error. Because these theories have not yet reached

maturity, we recommend that results of measurement

error models be considered tentative, and presented

along with results of traditional regression models.
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