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Abstract

Sewall Wright demonstrated 70 years ago that the number of migrants required to maintain specified levels of gene
flow (i.e. avoid excessive inbreeding) is virtually independent of the size of the recipient population. According
to conventional wisdom, this idea is valid provided population size exceeds ∼20. It is well known that this inde-
pendence implicitly assumes that a population’s effective size (Ne) is equal to its census size (N). However, it
is not obvious whether independence between the required number of migrants (to avoid excessive inbreeding)
and population size constitutes a reasonable assumption for real populations of conservation concern. Relying on
empirical data, we demonstrate that for real populations, the assumption (i.e. Ne = N) is routinely violated to
a degree such that the required number of migrants is strongly dependent on the size of the recipient population.
Because a population’s effective size (Ne) is typically much smaller than its census size (N), the number of migrants
required to avoid inbreeding is actually dependent on N even when it is considerably greater than 20. For example,
when Ne/N = 0.1, the number of migrants required to maintain the inbreeding coefficient (F) at 0.2 doubles (from 4
to 8) as N increases from 9 to 60. Similarly, when Ne/N = 0.05, the number of migrants required increases by 50%
as N increases from 18 to 45, and increases again by 50% as N increases from 45 to 260. Thus, for populations
much larger than 20, the required number of migrants increases asymptotically with N, and dramatically so when
Ne/N#1. Simple conventions regarding the requisite number of migrants may not apply to many populations of
conservation concern. Genetic management should routinely rely on models that explicitly account for this and
other recent considerations. Failure to do so may jeopardize the viability of populations that are sensitive to altered
levels of inbreeding.

‘Where m [the migration rate] is less than 1/2N there is a tendency toward chance fixation of one or the other
allelomorph. Greater migration prevents such fixation. How little interchange would appear necessary to hold a
large population together may be seen from the consideration that m = 1/2N means an interchange of only one
individual every other [sic] generation, regardless of the size of the subgroup [emphasis ours].’ – S. Wright (1931:
127–128).

Introduction

The theory of gene flow plays a central role in the
genetic management of conserved plant and animal
populations (Frankham 1995a; Mills and Allendorf
1996). The most notable application of this theory

is the rule that, regardless of their size, populations
receiving one migrant per generation will maintain
an equilibrium inbreeding coefficient (F) of 0.2. The
basis of this one-migrant-per-generation (OMPG) rule
is the expression that approximates the equilibrium
inbreeding coefficient (F) of an ideal population that
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receives migrants (Futuyma 1986):

F ≈ 1/(4Nm + 1), (1)

where N is the size of the ideal population, m is the
migration rate (migrants per generation), and Nm is
the number of migrants required to maintain F at a
particular value. Specifically, the OMPG rule arises
because Nm = 1 when F = 0.2 in Equation (1), which
depends on all of the assumptions of Wright’s (1931)
island model (see Mills and Allendorf [1996] for a
review of these assumptions as they pertain to the
OMPG rule). This somewhat arbitrary level of F is
thought to represent an appropriate balance between
the conflicting goals of avoiding inbreeding depression
(e.g. Jimenez et al. 1994; Keller et al. 1994; Sachherri
et al. 1998) and maintaining local adaptation (Mills
and Allendorf 1996).

An elegant, purported property of the OMPG rule
is that Nm is (virtually) independent of N. This arises
because F is very close to 0.2 (i.e. within 6%) for
populations receiving OMPG for all values of N>20
(Figure 1; see also Figure 3 of Mills and Allendorf
1996). The deviation for populations with effective
sizes of less than 20 is considered to be incon-
sequential since such small populations are likely to
go extinct due to demographic and environmental
stochasticity (Mills and Allendorf 1996). Thus, Nm is
virtually independent of N under the assumptions of
the OMPG rule.

Because it derives from Equation 1, the OMPG
rule strictly applies to ideal populations, for which
Ne = N. Thus, the OMPG should strictly be read
as: regardless of their effective (rather than census)
size, populations receiving one migrant per gener-
ation will maintain an equilibrium inbreeding coef-
ficient (F) of 0.2. Because for most real popula-
tions Ne < N (Frankham 1995b), managers are faced
with the challenge of translating between effective
and census population size and between effective and
actual number of migrants. Although the necessity
of this translation may be obvious, the consequences
may be nonintuitive because of the complex properties
and assumptions of Equation 1 (e.g. nonlinearity and
its approximate nature) and because Ne may typically
be an order of magnitude smaller than N (Frankham
1995b; Vucetich et al. 1997).

As a means of conserving genetic diversity, the
OMPG rule has been advocated for general (e.g.
Franklin 1980; Frankel and Soulé 1981; Allendorf
1983; Gogan 1990; Mace and Lande 1991) and
specific (e.g. U.S. Fish and Wildlife Service 1988;

Triggs et al. 1989) circumstances. With a view
towards providing a guide for managers, recent studies
have explored the potentially misleading properties of
Equation 1 (e.g. Mills and Allendorf 1996; Whitlock
and McCauley 1999; Vucetich and Waite 2000). In
doing so, these studies have discredited the applica-
tion of the OMPG rule for management. This criti-
cism of the OMPG rule appears to be serving an
important purpose, as evidenced by the 36 citations
Mills and Allendorf (1996) received between 1998
and 2000 (according to the Institute for Scientific
Information!). Some (e.g. Kark et al. 1999), but not
all, of these studies citing Mills and Allendorf reflect
an improved understanding of the inadequacies of the
OMPG rule for genetic management.

Building on recent efforts to clarify the applica-
tion of the OMPG rule, we explore the relationship
between N and Nm when the assumption Ne = N
is violated to the degree typical of real populations.
In doing so, we show that the required number of
migrants is strongly dependent on population size for
real populations (i.e. where Ne/N<1) and thus high-
light another potentially misleading property of the
OMPG rule.

Methods

To show that Nm is especially dependent on the census
size of the recipient population when Ne < N, we
begin with an exact expression for the equilibrium
inbreeding coefficient of a population that receives
migrants (Futuyma 1986):

F = (1 − m)2

2N − (2N − 1)(1 − m)2 . (2)

When Ne<N (e.g. due to population fluctuation), N in
Equation 2 should be replaced with Ne. The appropri-
ateness of this substitution has been demonstrated with
analytical (Rannala 1996; Hudson 1998) and simula-
tion (Vucetich and Waite 2000) analyses. To highlight
the influence of Ne/N we express Ne as αN, where α

represents the Ne/N ratio. (This ratio is usually < 1 and
may be estimated using a variety of demographic [e.g.
Vucetich and Waite 1998] and molecular genetic tech-
niques [e.g. Waples 1989; Jorde and Ryman 1995].)
These substitutions yield:

F = (1 − m)2

2αN − (2αN − 1)(1 − m)2 . (3)
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The accuracy of this model depends on the assump-
tion that the quantity (1–m)2 approximates the
probability that neither of two randomly selected
alleles (from within the population) comes from a
migrant (Futuyma 1986). This assumption should
hold when migrants are randomly selected either from
an effectively infinite single source population (i.e.
island-continent model) or from an effectively infinite
pool of finite subpopulations (i.e. island model)
(Futuyma 1986). Under these conditions, the size of
the migrant pool is effectively infinite and the Ne/N
ratio of the migrant pool is thus inconsequential (see
Vucetich and Waite 2000). However, if the migrant
pool is not effectively infinite, then our model may
need to be adjusted to account for the influence of
Ne/N on the migrant pool. Here, we simply point
out that under such conditions the required number
of migrants per generation would likely exceed the
number predicted by Equation 3.

Results and discussion

The OMPG rule is a special case of Equation 3,
where α = 1 (i.e. Ne = N). Thus, for the case where
Ne = N, Nm is virtually independent of N under
the assumptions of the OMPG rule. However, as Ne

decreases from N (i.e. α < 1), the value of F becomes
increasingly sensitive to changes in N, for any given
value of Nm (Figure 1). For example, when Ne/N
is 0.1 and Nm is held constant at 10, F more than
doubles as N increases from 20 to 100. To evaluate this
point more formally, we derive an expression for the
(actual) number of migrants by solving Equation 3 for
m, multiplying both sides of the resulting expression
by N, setting F = 0.2, and simplifying:

Nm = N
(

αN + 2 − √
(αN + 2)αN

)

αN + 2
≈ N

αN + 2
. (4)

To characterize the behavior of this equation, we note
that the numerator can be approximated as N. Inspec-
tion of this simplified expression reveals that (Ne/N)−1

is simply the asymptotic value for Nm as N becomes
large. In accordance with the OMPG rule, the number
of migrants required to maintain F at the arbitrary
value of 0.2 is nearly independent of N when α =
1 (Figure 2). However, as Ne decreases from N (i.e.
α<1), the number of migrants required to maintain
F at 0.2 increases substantially as N increases. For
example, when Ne/N is 0.1, the required number of
migrants doubles (from 4 to 8) as the census size of

Figure 1. The equilibrium inbreeding coefficient (F) as a function
of recipient population size (N). Each curve represents hypothetical
populations receiving the number of migrants per generation (Nm)
required to yield an asymptotic (with respect to N) F of 0.2, given
the population’s Ne/N ratio. For example, when Ne /N = 0.1, 10
migrants per generation will yield F values within 80% of 0.2, but
not until N > 60. The curves were generated according to Equation
4. The ranges and orientation of the axes are set to facilitate direct
comparison with Figure 3 in Mills and Allendorf (1996).

the local population increases from 9 to 60 individuals.
Similarly, when Ne/N is 0.05, the required number of
migrants increases by 50% (from 8 to 12) as the census
size increases from 18 to 45, and increases again by
50% (from 12 to 18) as the census size increases from
45 to 260.

These results are significant because most real
populations are characterized by a small Ne/N ratio.
Based on 37 empirical estimates of Ne/N (Frankham
1995b), a typical population (i.e. median Ne/N = 0.11)
would require some number of migrants (i.e. 9) that
is strongly dependent on N for N ∼< 55 (i.e. when N
= 55, F is <80% of the asymptotic value; Figure 3).
Based on the same 37 estimates, 20% of the popula-
tions would require some number of migrants (i.e. 4)
that is strongly dependent (i.e. <80% of the asymp-
tote) on N, but only for N ∼< 25. However, at the other
extreme, 20% of the populations would require some
number (i.e. 28) that is strongly dependent (i.e. <80%
of the asymptote) on N, even for N as large as ∼165.

Analysis of the conventional one-migrant-per-
generation rule reinforces recent claims that OMPG
will rarely be adequate to meet goals for the genetic
management of real populations (Mills and Allendorf
1996; Vucetich and Waite 2000; this study). Previ-
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Figure 2. (a) The number of migrants per generation (Nm in Equa-
tion 4) required to maintain the equilibrium inbreeding coefficient
(F) at 0.2 as a function of local population size for various values
of Ne /N (i.e. α in Equation 4). (b) The curves presented in panel (a)
are rescaled to facilitate comparison across Ne /N ratios.

ously, we explored how decreases in Ne/N lead to
increases in the actual number of migrants required to
maintain F at a given level (Vucetich and Waite 2000).
Specifically, we indicated that when F is set to 0.2,
Nm = 1/α = (Ne/N)−1, which implies that for a typical
value of Ne/N (i.e. ∼0.1; Frankham 1995b) the main-
tenance of F at 0.2 would require ∼10 migrants per
generation. According to conventional wisdom (Hartl
and Clark 1986), these results should not apply when
Ne is small (i.e. ∼< 20 Mills and Allendorf 1996). This
apparent limitation has not been of concern because
such small populations are prone to rapid extinction
due to nongenetic factors (see also Vucetich and Waite
1999). However, empirical considerations indicate
that because the effective size of real populations is
often much smaller than the census size, the requisite
number of migrants may typically depend on popu-
lation (census) size even when it is on the order
of 200. Thus, for real populations of conservation

Figure 3. The number of migrants per generation (Nm) required to
maintain the equilibrium inbreeding coefficient (F) at 0.2 as a func-
tion of population size (N). Each curve corresponds to a percentile
of an empirical distribution of Ne /N representing 37 animal popu-
lations (Frankham 1995b). For example, since the 80th percentile
of this distribution corresponds to Ne /N = 0.036, the curve labeled
‘80th percentile’ represents values of Nm (i.e. Equation 4) over a
range of local population sizes (N) where α = Ne /N ≥ 0.036.

concern, it will seldom be appropriate to assume that
the number of migrants required to avoid inbreeding
is independent of the size of the recipient popula-
tion. For real populations, the actual required number
of migrants depends on Ne/N (Vucetich and Waite
2000), recipient population size (this study), and other
important factors (Mills and Allendorf 1996; Whitlock
and McCauley 1999). Therefore, simple conventions
like the OMPG rule may be inappropriate for the
genetic management of many populations.
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