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Abstract: Conventional population viability analysis (PVA) is often impractical because data are scarce
for many threatened species. For this reason, simple count-based models are being advocated. The simplest
of these models requires nothing more than a time series of abundance estimates, from which variance
and autocorrelation in growth rate are estimated and predictions of population persistence are generated.
What remains unclear, however, is how many years of data are needed to generate reliable estimates of these
parameters and hence reliable predictions of persistence. By analyzing published and simulated time series, we
show that several decades of data are needed. Predictions based on short time series were very unreliable mainly
because limited data yielded biased, unreliable estimates of variance in growth rate, especially when growth
rate was strongly autocorrelated. More optimistically, our results suggest that count-based PVA is sometimes
useful for relative risk assessment (i.e., for ranking populations by extinction risk), even when time series are
only a decade long. However, some conditions consistently lead to backward rankings. We explored the limited
conditions under which simple count-based PVA may be useful for relative risk assessment.
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Confiabilidad de Predicciones Absolutas y Relativas de la Persistencia de Poblaciones Basadas en Series de Tiempo

Resumen: El análisis de viabilidad poblacional (AVP) a menudo es impráctico porque los datos para muchas
especies amenazadas son escasos. Por esta razón, los modelos simples basados en conteos están siendo apoy-
ados. El más simple de estos modelos requiere de nada más que una serie de tiempo de estimaciones de
abundancia, a partir de las cual se estiman la varianza y autocorrelación de la tasa de crecimiento y se
generan predicciones de la persistencia de la población. Sin embargo, aun no esta claro cuantos años de datos
son necesarios para generar estimaciones confiables de estos parámetros y por tanto predicciones confiables
de la persistencia. Analizando series de tiempo publicadas y simuladas, mostramos que se requieren datos de
varias décadas. Predicciones basadas en series de tiempo cortas fueron muy poco confiables principalmente
porque los datos limitados produjeron estimaciones sesgadas, poco confiables de la varianza de la tasa de
crecimiento, especialmente cuando la tasa de crecimiento estaba fuertemente autocorrelacionada. Más opti-
mistamente, nuestros resultados sugieren que el AVP basado en conteos a veces es útil para la evaluación de
riesgo relativo (i.e. para clasificar poblaciones por riesgo de extinción), aun cuando la serie de tiempo sólo
es de una década. Sin embargo, algunas condiciones conducen consistentemente a clasificaciones regresivas.
Exploramos las condiciones limitadas bajos las que los AVP basados en conteos pueden ser útiles para la
evaluación de riesgo relativo.

Palabras Clave: análisis de viabilidad poblacional, aproximación difusión, especies en peligro, evaluación de
riesgo, extinción, series de tiempo
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Introduction

Population viability analysis (PVA) is no longer the exclu-
sive domain of conservation biologists concerned with
promoting the persistence of a particular species. With in-
creasing frequency, it is being advocated as a tool in man-
agement and policy (Boyce 1992; Beissinger & McCul-
lough 2002; Morris & Doak 2002; Shaffer et al. 2002). For
example, three U.S. federal acts (the Federal Endangered
Species Act [ESA] of 1973, the National Forest Manage-
ment Act, and the Marine Mammal Protection Act) all re-
quire some unspecified form of risk analysis. Meanwhile,
the World Conservation Union (IUCN) has developed risk
assessment criteria that include risk of extinction (IUCN
1994). Some conservation biologists have recommended
a formal role for PVA in listing and delisting decisions un-
der ESA (Rohlf 1991; Thompson 1991; Scott et al. 1995;
Gerber & DeMaster 1999; Shelden et al. 2001; Shaffer et al.
2002) and in IUCN assessment (Mace & Lande 1991; Mace
et al. 1992; but see also Burgman et al. 1999; Keith et al.
2000), whereas others have criticized such recommen-
dations because PVA can be inaccurate, expensive, and
difficult to perform (e.g., Taylor 1995; Ralls et al. 1996;
Beissinger & Westphal 1998; Coulson et al. 2001; Ellner
et al. 2002; but see also Brook et al. 2000, 2002). These
difficulties are pronounced for complex PVAs, which re-
quire estimates of many parameters (Ludwig & Walters
1985; Harcourt 1995; Beissinger & Westphal 1998; Lud-
wig 1999; Meir & Fagan 2000) and hence more data than
are usually available (Mace & Lande 1991; Harcourt 1995;
Morris et al. 2002). Because simple PVAs have minimal
data requirements, it may be appropriate to increase our
use of these models (Holmes 2001; Belovsky et al. 2002;
Morris & Doak 2002; Morris et al. 2002).

The simplest of the count-based PVAs requires nothing
more than count data. This model predicts mean time
to extinction (MTE) from a time series of abundance esti-
mates (Dennis et al. 1991; Foley 1994). Various limitations
of this model have been evaluated (Sæther et al. 1998;
Hakoyama & Iwasa 2000; Wilcox & Possingham 2002),
but no study to date has asked how many count data are
needed for adequate performance (see, however, Taylor
1995; Moilanen et al. 1998; Thomas et al. 2002). We evalu-Q1

ated the number of years of abundance estimates required
to generate reliable estimates of variance in growth rate, a
key parameter in the model. We also evaluated how serial
autocorrelation influences the number of years of data re-
quired. Finally, we evaluated whether the model is useful
for relative risk assessment.

Diffusion Approximation

For all analyses, we used Foley’s (1994) model, which is
based on diffusion analysis (Dennis et al. 1991) and incor-

porates both density dependence and carrying capacity.
We simulated time series with the population model (Eq.
2 in Foley 1994)

nt+1 = rt + nt, (1)

where nt is the natural logarithm of population size (N)
at time t and rt is the ln-transformed growth rate. Pop-
ulation size (n) is constrained to the interval (0, k), and
the population is considered extinct when n = 0. For the
simple case of no autocorrelation in growth rate, rt is an
independently distributed normal random variable with
mean µ and variance vr. We assumed µ = 0 throughout.
The model uses abundance data to estimate MTE by the
relationship (Eq. 6 in Foley 1994)

MTE = 2n0

vr

(

k − n0

2

)

, (2)

where n0 is initial population size, vr is variance in growth
rate, and k is the population ceiling. Equation 2 applies
when the long-term population growth rate is approx-
imately zero. All parameters were calculated following
ln-transformation of abundance estimates. Variance in
growth rate was calculated directly from the measure-
ments of r. To correct for errors in vr resulting from any
correlation between rt and rt+1, autocorrelation ρ was
estimated for each series and used to calculate effective
variance (Eq. 10 in Foley 1994):

vre ≈ 1 + ρ

1 − ρ
vr , (3)

which is substituted for vr in Eq. 2.
Traditional diffusion approximation assumes that (1)

population trajectories follow Brownian motion; (2) vari-
ance in population size (N) and vr are stationary (Dennis
et al. 1991); (3) successive population growth rates are
uncorrelated; (4) growth rate is unaffected by population
density; and (5) growth rate exhibits no long-term trend
(for a complete list of assumptions see Holmes 2001; Mor-
ris & Doak 2002). Foley’s (1994) method accounts for
violations in two of these assumptions. First, any assump-
tion about variance in N is extraneous because a popula-
tion’s behavior is modeled from its growth rate r, which
is calculated from the first difference of n. Second, se-
rial autocorrelation in r is corrected with Eq. 3. Here, we
evaluated the performance of this correction. Violations
of other assumptions were left uncorrected.

Methods

Global Population Dynamics Database

We selected published time series of abundance from
the Global Population Dynamics Database (GPDD; Nat-
ural Environment Research Council [NERC] 2002), Q2

which is based on taxonomic group (Mammalia), length
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(minimum 20 years), and measurement type (census or
population abundance estimate). We excluded time series
generated from records of fur harvest or mortality. Alto-
gether, we chose 34 continuous time series representing
21 species.

To explore how length of time series affects estimates
of MTE, we first used a moving window to generate as
many segments as possible from each original time se-
ries. This method is analogous to a jackknife procedure.
For example, a 20-year time series was divided into 16
5-year segments (using years 1–5, 2–6, and so on), 15 6-
year segments, and so on. Then, a prediction of MTE was
calculated for each segment with Eq. 2. We did not in-
tend to generate realistic predictions for any particular
time series. Therefore, we arbitrarily set carrying capac-
ity at k = 15 (∼3 million), a value far higher than the
largest observed population size, and we scaled from 0
to 1 each MTE estimate originating from a particular time
series (by dividing it by the maximum predicted MTE for
that series). These steps guaranteed that extinction dy-
namics were governed entirely by variation in r and not
by k or average r.

Simulated Time Series

To simulate autocorrelated growth rates, rt (in Eq. 1) is
replaced by (Eq. A26 in Foley 1994):

rt = ρrt−1 + εt, (4)

where ρ is the correlation between rt and rt −1, and ε t

is an independently distributed normal random variable
with mean zero and variance (1 − ρ2)vr. Initial popula-
tion size and carrying capacity were set at 50 (n0 = 3.9)
and 100 (k = 4.6), respectively. Values for vr and ρ were
selected based on the 5th, 50th, and 95th percentiles of
the GPDD time series (Fig. 1). Using these biologically
realistic values, we simulated 1000 50-year time series for
each of six combinations of vr and ρ, in each case holding
one parameter constant to evaluate the role of the other.

Estimating Variance in Growth Rate

We used these simulations to assess how estimates of vari-
ance in r and effective variance in r are affected by length
of time series. We also evaluated how ρ affects estimates
of both vr and vre. In addition, we identified how esti-
mates of vre are affected by uncertainty in estimates of
autocorrelation (ρ̂). This final analysis evaluated the per-
formance of the autocorrelation correction (Eq. 2).

Estimating Population Persistence

We also used the simulated time series to evaluate how
many years of count data are needed to generate reliable
predictions of population persistence. To do so, we calcu-
lated two types of MTE predictions for each of six combi-
nations of parameter values (Fig. 1). First, the asymptotic

Figure 1. Relationship between ρ and vr (see Eq. 3 for
definition of vr) for time series from the Global
Population Dynamics Database. Letters correspond to
parameter-value combinations used in simulations
and relative-risk assessments.

MTE of the underlying process (MTEasym) was calculated
using these specified values of ρ, k, n0, and vr. Second,
an MTE prediction (MTEt) was generated for each length
of the time series (10–50 years) with specified values of
ρ, k, and n0 and estimated variance in growth rates (v̂r).
Then, isolating the effect of uncertainty in vr on predic-
tions of MTE, we quantified comparisons between MTEt

and MTEasym predictions as percent prediction error:

(

MTEt − MTEasym

MTEasym

)

× 100. (5)

Finally, we used the simulated time series to evaluate how
uncertainty in both vr and ρ affect estimation of MTE. To
do so, we used k, n0, v̂r , and estimated autocorrelation
(ρ̂) to estimate MTE (MTEest). We also used this measure
of MTE in the analysis of relative risk assessment.

Recognizing that the probability of extinction within
some time frame is the preferred measure of population
persistence for some conservationists, we extended our
analysis to include this metric. We converted predictions
of MTEt to estimates of probability of extinction within
X (=50) years with Vucetich & Waite’s (1998a, 1999)
expression

P 〈E | X 〉 = − exp
( −X

MTEt

)

+ 1, (6)

which assumes that times to extinction are exponentially
distributed.

Conservation Biology
Volume 18, No. 5, October 2004



4 Reliability of count-based PVA Lotts et al.

Figure 2. Relationship
between length of time
series (years) and the
percent difference between
asymptotic mean time to
extinction (MTEasym)
predicted by known
parameters of the simulated
time series and mean time
to extinction estimated by
time series of each shorter
segment (MTEt, an MTE
prediction) as calculated by
Eq. 5. The 5th, 50th, and
95th percentiles are shown.
Panels (a) and (b) show
prediction error for time
series simulated at zero
autocorrelation between
growth rates (ρ = 0) and
(a) low (0.01) and (b) high
(2.16) vr. Panels (c) and (d)
show prediction error for
time series simulated with
medium (0.21) vr and (c)
low (−0.31) and (d) high
(0.83) levels of ρ. Note the
y-axis scale in (d) differs
from the scale in a–c.
Asymptotic prediction error
occurs at y = 0.

Relative Risk Assessment

To examine whether Foley’s model could be used to make
reliable assessments of relative extinction risk based on
short (10-year) time series, we initially tested the model’s
ability to correctly rank populations by MTE for 15 real-
istic combinations of vr and ρ (Fig. 1; see also Ariño &
Pimm 1995). We used MTEest here because it requires es-
timates of both vr and ρ and is thus the most sensible
metric for real data. For each pair of populations consid-
ered, we determined the correct ranking by comparing
the true underlying risks as estimated by MTEasym. Pairs
of MTEest predictions based on 10-year simulated time se-
ries were compared in all possible combinations, and we
quantified the proportion of 1000 simulations that were
correctly ranked for each combination. In this prelimi-
nary analysis, we found that under some conditions the
ranking of populations could be consistently backward
(i.e., worse than chance). These preliminary results are
not reported here. Instead, we present the results from
a follow-up analysis, designed to explore more fully the
conditions favoring both highly accurate as well as back-
ward ranking of populations by risk.

Figure 3. Relationship between length of time series
(years) and estimated variance in growth rate
(v̂r).Comp: no italics. The 5th, 50th, and 95th
percentiles are shown. Graph shows v̂r for time series
simulated at medium (0.21) variance in growth rate
vr and zero autocorrelation between growth rates
(ρ = 0). Dotted line without symbols represents true
underlying vr..
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Figure 4. Relationship
between length of time series
(years) and MTE (mean time
to extinction). The 5th, 50th,
and 95th percentiles are
shown. Panels show MTEt (an
MTE prediction) for time
series simulated at medium
(0.21) vr and (a,b) low
(−0.31) and (c,d) high (0.83)
autocorrelation ρ. The MTEt

predictions in panels (a), (b),
(c), and (d) were calculated
using ρ and v̂re and ρ̂ and v̂re,
respectively. Dotted line
without symbols represents
MTEasym (asymptotic MTE),
calculated using parameter
values vr and ρ.

Results and Interpretation

Estimating Variance in Growth Rate and Population
Persistence

Analysis of both GPDD time series (not shown) and sim-
ulated time series (Fig. 2) revealed that predictions of
MTE based on short segments were extremely unreliable
because of bias and sampling error in estimation of vr

(Fig. 3). Most MTE predictions based on short time se-
ries exceeded predictions based on longer time series,
but for any given short time series, MTE could be very
large or very small. Short time series produced highly un-
reliable predictions of long-term MTE, particularly when
population growth rate was strongly positively autocor-
related (Fig. 4). Overall, predictions of extinction risk (in-
cluding P(E | 50) [Fig. 5]) tended to be overly optimistic,
although any individual prediction could either overesti-
mate or vastly underestimate extinction risk.

Relative Risk Assessment

Relative risk assessment was most accurate when two
populations differed substantially in MTEest (Fig. 6) and
in underlying vr (Fig. 7). Indeed, even when their MTEs
differed only moderately, pairs of simulated populations
were ranked correctly nearly every time, provided they
had different underlying levels of vr (i.e., provided the
two populations differed by at least one level of the five
assumed values [0.01, 0.06, 0.21, 0.70, 2.16]). However,
in some cases, two populations with different underlying

vr were ranked incorrectly most of the time (e.g., see bars
corresponding to vr = 0.06 in Fig. 7c). These incorrect
rankings occurred both when populations’ MTEs were
similar and when they were vastly different (Fig. 7). When
populations were the same or similar in underlying vr

but differed by even one level of ρ, they were correctly
ranked <75% (Fig. 7) and sometimes < 50% (Fig. 7c,d) of
the time. These results highlight some serious limitations
to using this model for relative risk assessment.

Discussion

Effects of Length of Time Series on Predictions of Persistence

The reliability of persistence predictions increases with
length of time series because the reliability of parameter
estimates increases with sample size. Short time series
do not adequately estimate population parameters (e.g.,
Vucetich & Waite 1998b) such as variance in r, leading in-
stead to downwardly biased and extremely uncertain es-
timates of variance in r (Fig. 3). Short time series also lead
to biased estimates of autocorrelation (Foley 1994). To-
gether, these biases lead to overly optimistic predictions
of population persistence (Figs. 4 & 5). All count-based
methods of PVA are likely to be biased in this way because
they all rely on an estimate of variance in r (Morris & Doak
2002). Beyond this bias, great uncertainty in parameter es-
timates translates into great uncertainty in extinction risk
predictions for any given short time series.

Conservation Biology
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Figure 5. Relationship
between length of time series
(years) and probability of
extinction P(E | 50)asym

converted from MTEasym

(asymptotic mean time to
extinction) and P(E | 50)t

converted from MTEt (an
MTE prediction). The 5th,
50th, and 95th percentiles
are shown. Panels (a)–(c)
show P(E | 50)t for time
series simulated at ρ = 0
and (a) low (0.01), (b)
medium (0.21), and (c)
high (2.16) vr. Note scale of
y-axis in panel (a) differs
from scale in (b)–(c). Panels
(d)–( f ) show P(E | 50)t for
time series simulated with
medium (0.21) vr and (d)
low (−0.31), (e) medium
(0.37), and ( f ) high (0.83)
levels of ρ.

Our study builds on earlier work showing that estimates
of variance in r are inflated at small population sizes and
deflated around the population ceiling (Wilcox & Possing-
ham 2002). Despite these and other considerations (Mid-
dleton & Nisbet 1997; Hakoyama & Iwasa 2000; Sæther et
al. 2000), it remains common practice to use the present
method for estimating r and variance in r (Wilcox & Poss-
ingham 2002, but see also Holmes 2001). Count-based
PVA should be performed and interpreted with these lim-
itations in mind.

Implications for Absolute and Relative Threat Assessment

Our findings present a challenge to conservation biolo-
gists who aim to err on the side of caution. Although

simple count-based PVAs have been advocated for use in
threat assessment because they require so few data (Allen
et al. 1992; Belovsky et al. 2002; Morris & Doak 2002),
the usefulness of these models depends strongly on the
amount of count data available. Predictions of population
persistence tend to be overly optimistic, not cautious, and
any given prediction is highly dubious (see also Ludwig
1999; Taylor et al. 2002). Our analysis suggests that predic-
tion error may be acceptably small only if several decades
of count data are available. Thus, absolute risk assessment
based on short time series may be worse than useless,
especially because the unwary may place too much con-
fidence in predictions generated by a complex computa-
tional procedure.

Conservation Biology
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Figure 6. Percent of rankings by MTEest (estimated
mean time to extinction) that were correct relative to
percent difference between MTEasym (asymptotic MTE)
for the two10-year time series. Note x-axis scale differs
in two panels.

Because predictions improve with length of time se-
ries, it is tempting for us to recommend massive data-
collection efforts. With such data, conservation managers
would have the option of using count-based models for
risk assessment. However, more data are no panacea. Even
if the parameters could be estimated perfectly, confidence
intervals around MTE estimates are extremely wide (95%
CI: 2.5–370% of MTE; Vucetich & Waite 1998a, 1999).
Reflecting this limitation, some workers have cautioned
that simple PVAs should be used only to weigh the relative
usefulness of management options, assess relative extinc-
tion risk, or make qualitative risk assessments (Beissinger
& Westphal 1998; Fagan et al. 1999; Fieberg and Sæther
et al. 2000; Belovsky et al. 2002; Reed et al. 2002; Wilcox Q3

& Possingham 2002; McCarthy et al. 2003).
Our study (see also McCarthy et al. 2003) reinforces the

general recommendation that count-based PVA should be
used for predicting relative, rather than absolute, extinc-
tion risk (for specific recommendations see Table 2 in
Beissinger & Westphal 1998). Our results show that rela-
tive extinction risk of pairs of populations can be assessed
effectively, even with only 10 years of count data, pro-

vided the populations differ sufficiently in their levels of
risk. If two populations’ MTEs differ by an order of magni-
tude, they are ranked correctly virtually every time (Fig.
6), suggesting that the method may work best when it is
not even needed. Pairs of populations can also be con-
sistently ranked correctly if they differ in underlying vari-
ance in r (Fig. 7). We emphasize, however, that in some
cases pairs of populations are correctly ranked less than
half the time. Incorrect rankings occur when two pop-
ulations differ in both variance in r and autocorrelation.
Typically, when time series are short and when autocor-
relation in r is strongly positive, variance in r is under-
estimated and MTE is overestimated. Thus, when one of
two populations under comparison has strongly autocor-
related r, that population’s MTE tends to be vastly overes-
timated. The consequence is a consistently reversed rank-
ing of the two populations’ true levels of extinction risk
(Fig. 7). Therefore, under some conditions, the relative
risk faced by two populations would be more accurately
assessed by a coin toss than by ranking based on MTE
predictions. Additional analysis is needed before offering
any prescription as to how much count data are needed
or how pairs of populations must compare in their pa-
rameter values.

Future Directions

Our study shows that, under some conditions, a simple
count-based model can be used to assess relative extinc-
tion risk. This guardedly optimistic conclusion may prove
too optimistic. After all, we purposely chose to evaluate
the simplest of all count-based PVA models. More real-
istic models require estimation of additional parameters
and thus may yield even less reliable predictions. Future
studies should include a detailed evaluation of the utility
of both simple count-based models and more complex
models for relative risk assessment and should evaluate
how many years of data are required for adequate assess-
ment. Such studies should investigate whether these mod-
els yield reliable rankings when there are more than two
populations and whether they do so for other taxa and
life histories (Wilcox & Possingham 2002). Ultimately, it
may be prudent to use crude methods of relative risk as-
sessment, which would have the advantage of inspiring
only limited confidence. More optimistically, extensive
simulation studies may lead to the development of clear
guidelines for relative risk assessment based on simple
count-based models.
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Each panel has one missing bar where the standard series was not compared with itself.
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